Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Knowledge about complex physical phenomena used in the casting process simulation requires continuous complementary research and improvement in mathematical modeling. The basic mathematical model taking into account only thermal phenomena often becomes insufficient to analyze the process of metal solidification, therefore more complex models are formulated, which include coupled heat-flow phenomena, mechanical or shrinkage phenomena. However, such models significantly complicate and lengthen numerical simulations; therefore the work is limited only to the analysis of coupled thermal and flow phenomena. The mathematical description consists then of a system of Navier-Stokes differential equations, flow continuity and energy. The finite element method was used to numerically modeling this problem. In computer simulations, the impact of liquid metal movements on the alloy solidification process in the casting-riser system was assessed, which was the purpose of this work, and the locations of possible shrinkage defects were pointed out, trying to ensure the right supply conditions for the casting to be free from these defects.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
489--495
Opis fizyczny
Bibliogr. 12 poz., fot., rys., tab., wzory
Twórcy
autor
- Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, 73 Dąbrowskiego Str., 42-200 Częstochowa, Poland
autor
- Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, 73 Dąbrowskiego Str., 42-200 Częstochowa, Poland
autor
- Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, 73 Dąbrowskiego Str., 42-200 Częstochowa, Poland
Bibliografia
- [1] S.L. Nimbulkar, R.S. Dalu, Perspectives in Science 8, 39-42 (2016). DOI: 10.1016/j.pisc.2016.03.001
- [2] P.H. Huang, C.J. Lin, Int. J. Adv. Manuf. Technol. 79 (7), 997-1006 (2015). DOI: 10.1007/S00170-015-6897-5
- [3] R.W. Lewis, E.W. Postek, Z. Han, D.T. Gethin, International Journal of Numerical Methods for Heat & Fluid Flow 16 (5), 539-572 (2006). DOI: 10.1108/09615530610669102
- [4] T . Skrzypczak, L. Sowa, E. Węgrzyn-Skrzypczak, Archives of Foundry Engineering 20(1), 37-42 (2020). DOI: 10.24425/afe.2020.131280
- [5] L. Sowa, T. Skrzypczak, P. Kwiatoń, Archives of Foundry Engineering 20 (2), 31-36 (2020). DOI: 10.24425/afe.2020.131298
- [6] P.H. Huang, J.K. Kuo, T.H. Fang, W. Wu, MATEC Web of Conferences.185, (2018). DOI: 10.1051/matecconf/ 201818500008
- [7] D. Bartocha, T. Wróbel, J. Szajnar, W. Adamczyk, W. Jamrozik, M. Dojka, Arch. Metall. Mater. 62 (3), 1609-1613 (2017). DOI: 10.1515/amm-2017-0246
- [8] A.S. Jabur, F.M. Kushnaw, J. Appl. Computat. Math. 6 (4), (2017). DOI: 10.4172/21689679.1000371
- [9] A.A. Burbelko, D. Gurgul, M. Królikowski, M. Wróbel, Archives of Foundry Engineering 13 (4), 9-14 (2013). DOI:10.2478/afe-2013-0074
- [10] J. Jezierski, R. Dojka, K. Janerka, Metals 8 (2018). DOI: doi.org/10.3390/met8040266
- [11] M. Nadolski, A. Zyska, Z. Konopka, M. Łągiewka, J. Karolczyk, Archives of Foundry Engineering 11 (3), 141-144 (2011).
- [12] R. Nadella, D.G. Eskin, Q. Du, L. Katgerman, Progress in Materials Science 53 (3), 421-480 (2008). DOI: doi.org/10.1016/j.pmatsci.2007.10.001
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d887154c-dcf5-4d6e-bb73-31fa9f8baa96