PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of seawater absorption on retention of mechanical properties of nano-TiO2 embedded glass fiber reinforced epoxy polymer matrix composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nano-fillers are embedded with epoxy polymer matrix of glass fiber reinforced polymer (GFRP) composites to enhance the mechanical properties. In the present investigation, the nano-TiO2 particles of different concentrations was mixed with the epoxy polymer matrix to improve the mechanical properties. GFRP nano-composites fabricated by hand lay-up method and subsequently immersed in a seawater bath at 70 °C for 40 days. The seawater diffusivity, flexural, and interlaminar shear strength of the composites were evaluated and compared between themselves. The result revealed that with the addition of 0.1 wt.% of the nano-TiO2 particles into the epoxy polymer matrix, seawater diffusivity improved by 15%. However, flexural and interlaminar shear strength of seawater aged nanocomposites is increased by 15% and 23% respectively. The fractured surface of the broken samples has been analyzed through field emission scanning electron microscope (FESEM) to establish the structure–property co-relationship.
Rocznik
Strony
1597--1607
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, KIIT, Deemed to be University, Bhubaneswar, India
autor
  • Metallurgical and Materials Engineering, NIT Rourkela, India
Bibliografia
  • [1] P. Gonon, A. Sylvestre, J. Teysseyre, C. Prior, Combined effects of humidity and thermal stress on the dielectric properties of epoxy-silica composites, Mater. Sci. Eng. B 83 (2001) 158–164. , http://dx.doi.org/10.1016/S0921-5107(01)00521-9.
  • [2] C. Maggana, P. Pissis, Water sorption and diffusion studies In an epoxy resin system, J. Polym. Sci. B: Polym. Phys. 37 (1999) 1165–1182. , http://dx.doi.org/10.1002/(SICI)1099-0488 (19990601)37:11<1165::AID-POLB11>3.0.CO;2-E.
  • [3] T. Yilmaz, T. Sinmazcelik, Effects of hydrothermal aging on glass–fiber/polyetherimide (PEI) composites, J. Mater. Sci. 45 (2009) 399–404. , http://dx.doi.org/10.1007/s10853-009-3954-1.
  • [4] L. Gautier, B. Mortaigne, V. Bellenger, Interface damage study of hydrothermally aged glass-fibre-reinforced polyester composites, Compos. Sci. Technol. 59 (1999) 2329–2337. , http://dx.doi.org/10.1016/S0266-3538(99)00085-8.
  • [5] B. De'Nève, M.E.R. Shanahan, Water absorption by an epoxy resin and its effect on the mechanical properties and infrared spectra, Polymer 34 (1993) 5099–5105. , http://dx.doi.org/10.1016/0032-3861(93)90254-8.
  • [6] Q. Zheng, R.J. Morgan, Synergistic thermal-moisture damage mechanisms of epoxies and their carbon fiber composites, J. Compos. Mater. 27 (1993) 1465–1478. , http://dx.doi.org/10.1177/002199839302701503.
  • [7] G.Z. Xiao, M. Delamar, M.E.R. Shanahan, Irreversible interactions between water and DGEBA/DDA epoxy resin during hygrothermal aging, J. Appl. Polym. Sci. 65 (1997) 449–458. , http://dx.doi.org/10.1002/(SICI)1097-4628(19970718)65:3<449::AID-APP4>3.0.CO;2-H.
  • [8] A. Hodzic, J.K. Kim, A.E. Lowe, Z.H. Stachurski, The effects of water aging on the interphase region and interlaminar fracture toughness in polymer–glass composites, Compos. Sci. Technol. 64 (2004) 2185–2195. , http://dx.doi.org/10.1016/j.compscitech.2004.03.011.
  • [9] F. Ellyin, R. Maser, Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens, Compos. Sci. Technol. 64 (2004) 1863–1874. , http://dx.doi.org/10.1016/j.compscitech.2004.01.017.
  • [10] C.J. Huang, S.Y. Fu, Y.H. Zhang, B. Lauke, L.F. Li, L. Ye, Cryogenic properties of SiO2/epoxy nanocomposites, Cryogenics 45 (2005) 450–454. , http://dx.doi.org/10.1016/j.cryogenics.2005.03.003.
  • [11] L. Yan, N. Chouw, Effect of water, seawater and alkaline solution ageing on mechanical properties of flax fabric/epoxy composites used for civil engineering applications, Constr. Build. Mater. 99 (2015) 118–127. , http://dx.doi.org/10.1016/j.conbuildmat.2015.09.025.
  • [12] N. Tual, N. Carrere, P. Davies, T. Bonnemains, E. Lolive, Characterization of sea water ageing effects on mechanical properties of carbon/epoxy composites for tidal turbine blades, Compos. Part Appl. Sci. Manuf. 78 (2015) 380–389. , http://dx.doi.org/10.1016/j.compositesa.2015.08.035.
  • [13] G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, H.-J. Kim, D.H. Jung, Investigation of seawater effects on the mechanical properties of untreated and treated MMT-based glass fiber/vinylester composites, Ocean Eng. 108 (2015) 393–401.
  • [14] X.J. Fan, S.W.R. Lee, Q. Han, Experimental investigations and model study of moisture behaviors in polymeric materials, Microelectron. Reliab. 49 (2009) 861–871. , http://dx.doi.org/10.1016/j.microrel.2009.03.006.
  • [15] Y. Hu, G. Du, N. Chen, A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity, Compos. Sci. Technol. 124 (2016) 36–43. , http://dx.doi.org/10.1016/j.compscitech.2016.01.010.
  • [16] Z. Hashin, Analysis of composite materials—a survey, J. Appl. Mech. 50 (1983) 481–505. , http://dx.doi.org/10.1115/1.3167081.
  • [17] William D. Callister, David G. Rethwisch, Materials Science and Engineering: An Introduction, 9th ed., Wiley, 2016 http://as.wiley.com/WileyCDA/WileyTitle/productCd-EHEP002505. html (accessed 15.08.16).
  • [18] W. Han, S. Chen, J. Campbell, X. Zhang, Y. Tang, Fracture toughness and wear properties of nanosilica/epoxy composites under marine environment, Mater. Chem. Phys. 177 (2016) 147–155. , http://dx.doi.org/10.1016/j. matchemphys.2016.04.008.
  • [19] K. Kumar, P.K. Ghosh, A. Kumar, Improving mechanical and thermal properties of TiO2-epoxy nanocomposite, Compos. Part B Eng. 97 (2016) 353–360. , http://dx.doi.org/10.1016/j.compositesb.2016.04.080.
  • [20] A. Chatterjee, M.S. Islam, Fabrication and characterization of TiO2–epoxy nanocomposite, Mater. Sci. Eng. A. 487 (2008) 574–585. , http://dx.doi.org/10.1016/j.msea.2007.11.052.
  • [21] J.L.H. Chau, C.-T. Tung, Y.-M. Lin, A.-K. Li, Preparation and optical properties of titania/epoxy nanocomposite coatings, Mater. Lett. 62 (2008) 3416–3418. , http://dx.doi.org/10.1016/j.matlet.2008.02.058.
  • [22] H. Shi, F. Liu, L. Yang, E. Han, Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2, Prog. Org. Coat. 62 (2008) 359–368. , http://dx.doi.org/10.1016/j.porgcoat.2007.11.003.
  • [23] E.P. Gellert, D.M. Turley, Seawater immersion ageing of glassfibre reinforced polymer laminates for marine applications, Compos. Part Appl. Sci. Manuf. 30 (1999) 1259–1265. , http://dx.doi.org/10.1016/S1359-835X(99)00037-8.
  • [24] V.M. Karbhari, W. Chu, Degradation kinetics of pultruded Eglass/vinylester in alkaline media, ACI Mater. J. 102 (2005) 34–41.
  • [25] C. Cerbu, Effects of the Long-Time Immersion on the Mechanical Behaviour in Case of Some E-glass/Resin Composite Materials (2010), http://dx.doi.org/10.5772/10462.
  • [26] M.A. Abanilla, Y. Li, V.M. Karbhari, Durability characterization of wet layup graphite/epoxy composites used in external strengthening, Compos. Part B Eng. 37 (2005) 200–212. , http://dx.doi.org/10.1016/j.compositesb.2005.05.016.
  • [27] H.-Y. Kim, Y.-H. Park, Y.-J. You, C.-K. Moon, Short-term durability test for GFRP rods under various environmental conditions, Compos. Struct. 83 (2008) 37–47. , http://dx.doi.org/10.1016/j.compstruct.2007.03.005.
  • [28] R.K. Nayak, K.K. Mahato, B.C. Routara, B.C. Ray, Evaluation of mechanical properties of Al2O3 and TiO2 nano filled enhanced glass fiber reinforced polymer composites, J. Appl. Polym. Sci. 133 (2016), http://dx.doi.org/10.1002/app.44274.
  • [29] H.-K. Park, L. Su-Jin, K. Yoon-Jeong, C.-I. Jang, J.-P. Won, Mechanical properties and microstructures of GFRP rebab after long-term exposure to chemical environments, Polym. Polym. Compos 15 (2007) 403–408. http://search.proquest.com/docview/197458607/abstract/9F8236BAD5B748F8PQ/1(accessed 13.06.16).
  • [30] A.J. Kinloch, K. Masania, A.C. Taylor, S. Sprenger, D. Egan, The fracture of glass-fibre-reinforced epoxy composites Rusing nanoparticle-modified matrices, J. Mater. Sci. 43 (2008) 1151–1154. , http://dx.doi.org/10.1007/s10853-007-2390-3.
  • [31] J.-P. Won, Y.-N. Yoon, B.-T. Hong, T.-J. Choi, S.-J. Lee, Durability characteristics of nano-GFRP composite reinforcing bars for concrete structures in moist and alkaline environments, Compos. Struct. 94 (2012) 1236–1242. , http://dx.doi.org/10.1016/j.compstruct.2011.11.006.
  • [32] M.A.G. Silva, B.S. da Fonseca, H. Biscaia, On estimates of durability of FRP based on accelerated tests, Compos. Struct. 116 (2014) 377–387. , http://dx.doi.org/10.1016/j. compstruct.2014.05.022.
  • [33] R.M.V.G.K. Rao, M. Chanda, N. Balasubramanian, Factors affecting moisture absorption in polymer composites: Part II. Influence of external factors, J. Reinf. Plast. Compos. 3 (1984) 246–253. , http://dx.doi.org/10.1177/073168448400300305.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8836810-46f5-4669-89d3-8b6ebf4ce865
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.