PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical investigation on the noise development in fluid power units: an overview

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low noise fluid power units become a rapidly increasing demand in modern industry. This paper describes the generation of vibrations and noise in fluid power units, which in many industrial applications have a decisive influence on the increased noise emission. The causes of vibrations and noise in displacement pumps were first described which are loaded with very high dynamic forces originating from variable pressures. For this reason, positive displacement pumps are often considered the main sources of noise in fluid power units. The location of noise sources shows that often other fluid power unit elements having a larger surface area, such as the electric motor and the tank, can be decisive in the generation of noise. A system-based approach is considered, whereby the entire structure of the fluid power unit, including the fluid. In particular, the FE model of the fluid power unit was developed to calculate the system's natural frequencies, which has been validated using experimental modal analyses. Based on the FEA results, the sensitivity analysis enables the determination of changes leading to the reduction of vibrations and noise. The presented approach can be extended to other configurations of system components and contributes to the development of quieter fluid power units.
Rocznik
Strony
art. no. e166, 2022
Opis fizyczny
Bibliogr. 45 poz., fot., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza Street 5, 50-371 Wroclaw, Poland
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza Street 5, 50-371 Wroclaw, Poland
Bibliografia
  • [1] Skaistis S. Noise control in hydraulic machinery. New York: Marcel Dekker Inc.; 1988.
  • [2] Hubballi B, Sondur V (2017) oise control in oil hydraulic system. In: Proc. of 2017 International conference on hydraulics and pneumatics—HERVEX, November 8–10, Băile, Govora, Romania.
  • [3] Ortwig H. Experimental and analytical vibration analysis in fluid power systems. Int J Solids Struct. 2005;42:5821–30.
  • [4] Edge KA (1999) Designing quieter hydraulic systems—some recent developments and contributions. In: Proceedings of the Fourth JHPS International Symposium on Fluid Power, Tokyo, Japan, 3–27.
  • [5] Fiebig W, Wróbel J (2018) System Approach to Noise Reduction in Fluid Power Units, Proc. of ASME Bath conference.
  • [6] Opperwall T, Vacca A. A combined FEM/BEM model and experimental investigation into the effects of fluid-borne noise sources on the air-borne noise generated by hydraulic pumps and motors. Proc Inst Mech Eng C J Mech Eng Sci. 2014;228(3):457–71.
  • [7] Casoli P, Vacca A, Franzoni G (2005) A numerical model for the simulation of external gear pumps, In: Proceedings of the 6 th JPFS International Symposium on Fluid power, Tsukuba, November 2005.
  • [8] Mucchi E, Rivola A, Dalpiaz G. Modelling dynamic behavior and noise generation in gear pumps: procedure and validation. Appl Acoust. 2014;77:99–111.
  • [9] Fiebig W (2014) Influence of the inter teeth volumes on the noise generation in external gear pumps, Archives of Acoustics 39(2):261–266.
  • [10] Hao ZY, Hao SM Design and performance analysis of a circular arc gear pump operating at high pressure and high speed. Proc Inst Mech Eng Part C J Mech Eng Sci 2016; 230: 189–205.
  • [11] Fiebig W, Korzyb M. Vibration and dynamical loads in external gear pumps. Arch Civ Mecha Eng ACME. 2015;15(3):680–8.
  • [12] Mucchi E., Dalpiaz G., 2012, Numerical vibro-acoustic analysis of gear pumps for automotive applications. Proceedings of the international conference on noise and vibration engineering, Leuven, Belgium, 3951–3961.
  • [13] Woo S, Opperwall T, Vacca A, Rigosi M Modeling Noise Sources and Propagation in External Gear Pumps, Energies, 2017; 10(&):1068.
  • [14] Dhar S, Vacca A. A fluid structure interaction-EHD model of lubricating gaps in external gear machines: formulation and validation. Tribol Int. 2013;62:78–90.
  • [15] Ivantsysynova M, Huang C. Investigation of the flow in displacement machines considering elastohydrodynamical effects. Proc. Of the V JFPS Int. Symp Fluid Power Nara Japan. 2002;1:219–29.
  • [16] Mucchi E, Tosi G, D’Ippolito R, Dalpiaz G, (2010) A robust design optimization methodology for external gear pumps. Proceedings of the ASME 2010 engineering systems design and analysis, Istanbul, Turkey, 1–10.
  • [17] Carletti E, Miccoli G, Pedrielli F, Parise G. Vibroacoustic measurements and simulations applied to external gear pumps: an integrated simplified approach. Arch Acoust. 2016;41:285–96.
  • [18] Szwemin P, Fiebig W, CFD analysis of the leakages in external gear pump, 10th International Conference on Fluid Power Transmission and Control (ICFP 2021), April 11–13, Hangzhou, China, 2021.
  • [19] Thiagarajan D, Dhar S, Vacca A. 2017, Improvement of lubrication performance in external gear machines through micro-surface wedged gears. Tribol Trans. 2017;60:337–48.
  • [20] Frosina E, Senatore A, Rigosi M. Study of a high-pressure external gear pump with a computational fluid dynamic modeling approach. Energies. 2017;10(8):1113.
  • [21] Zecchi M, Vacca A, Casoli P Numerical analysis of the lubricating gap between bushes and gears in external spur gear machines, In: Proceedings of FPMC 2010 Bath/ASME Symposium on Fluid Power and Motion Control, 2010.
  • [22] Inaguma Y, Theoretical analysis of mechanical efficiency in vane pump, JTEKT Engineering Journal English Edition, 28–35, 2010.
  • [23] Cho MR, Han DC. Vane tip detachment in a positive displacement vane pump. KSME Int J. 1998;12(5):881–7.
  • [24] Fiebig W, Cependa P, Kuczwara H, Wang F. Analysis of vane loads and motion in a hydraulic double vane pump with integrated electrical drive. Arch Civ Mech Eng ACME. 2021;21(112):2–15.
  • [25] Mucchi E, Agazzi A, D"Elia G et al., On the wear and lubrication regime in variable displacement vane pumps, Wear, , 2013; 306(1-2): 36-46.
  • [26] Alghamdi A, Elashmawy M, Vane geometry effect on lubrication conditions between vane tip and cam-ring in hydraulic vane machines. International Journal of Mechanical Engineering and Applications, 2014; 3(1).
  • [27] Rundo M, Altare G, Lumped parameter and three-dimensional CFD simulation of a variable displacement vane pump for engine lubrication, Proceedings of the ASME 2017 Fluids Engineering Division, Summer Meeting, 2017.
  • [28] Manco S, Nervegna N, Rundo M. Modelling and simulation of variable displacement vane pumps for IC Engine lubrication. Detroit, MI: SAE World Congress; 2004. p. 1–10.
  • [29] Suzuki K, Nakamura Y et al., Characteristics Prediction of Vane Pump by CFD Analysis, KYB Technical Review No. 53 Oct. 2016, 2016.
  • [30] Fiebig W, Cependa P, Szwemin P, Kuczwara H, Innovative solution of an integrated motor pump assembly. conference: ASME/BATH 2017 Symposium on Fluid Power and Motion Control, Sarasota, USA, 2017.
  • [31] Ye SG, Zhang JH, Xu B Noise reduction of an axial piston pump by valve plate optimization. In: Chinese Journal of Mechanical Engineering, 2018; 31–57.
  • [32] Manring ND, Dong Z. The impact of using a secondary swash-plate angle within an axial piston pump. J Dyn Syst Meas Contr. 2004;126(1):65–74.
  • [33] Johansson A, Olvander J, Palmberg J-O. Experimental verification of cross-angle for noise reduction in hydraulic piston pumps. Proc Inst Mech Eng Part I. 2007;221(3):321–30.
  • [34] Milinda TR, Mitrab M, 2016, A study on the flexible multibody dynamic modeling of an axial piston pump considering housing flexibility, In: 12th International Conference on Vibration Problems, ICOVP 2015, Procedia Engineering 144: 1234–1241.
  • [35] Fornarelli F, Lippolis A, Oresta P, Posa A. A computational model of axial piston swashplate pumps, 72 conference of italian thermal machines engineering association. Lecce, Italy, Energy Procedia. 2017;126:1147–54.
  • [36] Ivantysynova M, Huang C, Christiansen S-K Computer aided valve plate design—an effective way to reduce noise, In: Proceedings of the SAE Commercial Vehicle Engineering Congress & Exhibition. Chicago, IL, USA. SAE Technical Paper 2004–01–2621, 2004.
  • [37] Seeniraj GK, Ivantysynova M. A multi-parameter multi objective approach to reduce pump noise generation. Int J Fluid Power. 2011;12(1):7–17.
  • [38] Fiebig W, Heisel U, Schwingungs- und Gerauschoptimierung von Hydropumpen durch Analyse des Schwingungsverhaltens von ihren Gehausen. 11 Aachener Fluidtechnisches Kolloquium, 8, 8–10 March, Band 1, pp 171–188, 1994.
  • [39] Fiebig W Gerauschminderung in hydraulischen Systemen. Dusseldorf: VDI Verlag 2008 208 s., Fortschritt-Berichte VDI; R. 11, Schwingungstehnik, ISSN 0178–9554; Nr 337.
  • [40] Fiebig W. Location of noise sources in fluid power machines. Int J Occup Saf Ergon. 2007;13:441–50.
  • [41] Smith MG, Kim KB, Thompson DJ Noise source identification using microphone arrays, Proceedings of the Institute of Acoustics, , 2007; 29(5).
  • [42] Kaneda Y Adaptive microphone- array system for noise reduction. IEEE Transaction on Acoustics, Speech and Signal Processing, 1986; ASSP-34: 1391–1400.
  • [43] Fiebig W, Wróbel J, Transmission of fluid-borne noise in the reservoir. Proc. of ASME Bath conference, 2018.
  • [44] ANSYS Inc., ANSYS Meshing Users Guide, 2017.
  • [45] ANSYS Inc., ANSYS Mechanical APDL Theory Reference, 2017.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d881c416-8c88-48a1-ba65-0b4adfdc0baf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.