PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Weighted difference schemes for systems of quasilinear first order partial functional differential equations

Autorzy
Identyfikatory
Warianty tytułu
PL
Ważona metoda różnicowa dla układów quasiliniowych cząstkowych równań różniczkowo-funkcyjnych pierwszego rzędu
Języki publikacji
EN
Abstrakty
EN
The paper deals with initial boundary value problems of the Dirichlet type for system of quasilinear functional differential equations. We investigate weighted difference methods for these problems. A complete convergence analysis of the considered difference methods is given. Nonlinear estimates of the Perron type with respect to functional variables for given functions are assumed. The proof of the stability of difference problems is based on a comparison technique. The results obtained here can be applied to differential integral problems and differential equations with deviated variables. Numerical examples are presented.
PL
Praca dotyczy zagadnień początkowo brzegowych typu Dirichlet’a dla układów quasiliniowych równań różniczkowo-funkcyjnych. Zamieszczona jest konstrukcja ważonych metod różnicowych dla wyjściowych zagadnień różniczkowych oraz przeprowadzona jest pełna analiza zbieżności. Niezbędne założenia obejmują oszacowania typu Perrona dla funkcji danych względem argumentów funkcyjnych. Dowód stabilności metody różnicowej opiera się na technice porównawczej. Teoretyczne rezultaty zobrazowane są na przykładzie całkowego równania różniczkowego oraz równań różniczkowych z odchylonym argumentem.
Rocznik
Strony
225--251
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
  • Gdańsk University of Technology, G. Narutowicz Street 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] P. Brandi, Z. Kamont, A. Salvadori, Differential and differential - difference inequalities related to mixed problems for first order partial differential – functional equations, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 255-276. MR 1111772; Zbl 00011753
  • [2] H. Brunner, The numerical treatment of ordinary and partial Volterra integrodifferential equation, In Proc. First Internat. Colloq. Numer. Anal. (Plovdiv 1992, ed. D. Bainov) Utrecht, VSP (1993), 13-26. MR 1455913; Zbl 00884973
  • [3] A. Baranowska, Z. Kamont, Numerical method of lines for first order partial differential - functional equations, Zeit. Anal. Anwend. 21 (2002), 949-962. MR 1957307; doi: 10.4171/ZAA/1119; Zbl 01925961
  • [4] P. Bassanini, M. C. Salvatori, Un problema ai limiti per sistemi integro – differenziali non lineari di tipo iperbolico, Boll. Un. Mat. Ital. (5) 18 - B (1981), 785-798. Zbl 03774277
  • [5] T. Bárta, Delayed quasilinear evolution equations with application to heat flow, Math. Nachr. 283, no. 5 (2010), 648-658. MR 2666296; doi: 10.1002/mana.200710005; Zbl 05708732
  • [6] C. J. Chyan, G. F. Webb, A model of proliferating cell populations with correlation of mother - doughter mitotic times, Ann. Mat. Pura Appl. (4) 158 (1991), 1-11. MR 1131842.
  • [7] R. Ciarski, Stability of difference equations generated by quasilinear differential functional problems, Demonstratio Math. 35 (2002), 557-571. MR 1917098; Zbl 01805784.
  • [8] W. Czernous, Generalized method of lines for first order partial functional differential equations, Ann. Polon. Math. 89 (2006), 103-126. MR 2260462; doi: 10.4064/ap89-2-1; Zbl 05081512.
  • [9] W. Czernous, Generalized Euler method for first order partial differential functional equations, Mem. Diff. Equ. Math. Phys. 39 (2006), 49-68. MR 2296337; Zbl 05189913.
  • [10] W. Czernous, Z. Kamont, Implicit difference methods for parabolic functional differential equations, Z. Angew. Math. Mech. 85 (2005), 326-338. MR 2135969; doi: 10.1002/zamm.200410186; Zbl 02173109.
  • [11] W. Czernous, Z. Kamont, Comparison of explicit and implicit difference methods for quasilinear functional differential equations, Appl. Mat. (Warsaw) 38 (2011), 315-340. MR 2812195; doi: 10.4064/am38-3-4; Zbl 05917258.
  • [12] T. Człapinski, On the mixed problem for quasilinear partial differential – functional equations of the first order, Z. Anal. Anwend. 16 (1997), 463-478. MR 1459969; doi: 10.4171/ZAA/773; Zbl 01046000.
  • [13] C. M. Dafermos, Hyperbolic conservation laws with memory, Differential Equations (Xanti 1987), Lect. Not. in Pure and Appl. Math., 118 Dekker, New York (1989), 157-166. MR 1021711; Zbl 04148730.
  • [14] E. Godlewski, P.-A. Reviart, Numerical Approximation of Hyperbolic Systems of Conserwation Laws, Springer, New York, NY, USA (1996). MR 1410987; Zbl 00954087.
  • [15] D. Jaruszewska - Walczak, Z. Kamont, Numerical methods for hyperbolic functional differential problems on the Haar pyramid, Computiong 65 (2000), 45-72. MR 1779709; Zbl 01523190.
  • [16] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Dordrecht: Kluver Acad. Publ. (1999). MR 1784260; Zbl 01361740.
  • [17] Z. Kamont, K. Prządka, Difference methods for first order partial differential – functional equations with initial boundary conditions, Zh. Vychisl. Mat. i Mat. Fiz. 31 (1991), 1476-1488. MR 1145217; Zbl 04216549.
  • [18] A. Kępczyńska, Implicit difference methods for first order partial differential functional equations, Non. Oscil. Vol. 8 (2005), 201-215. MR 2190060; doi: 10.1007/s11072-005-0049-z; Zbl 05130153.
  • [19] A. Kępczyńska, Implicit difference methods for Hamilton - Jacobi differential functional equations, Demonstratio Math. 40 (2007), 125-150. MR 2330371; Zbl 05178044.
  • [20] A. Kępczyńska, Implicit difference methods for quasilinear differential functional equations on the Haar pyramid, Z. Anal. Anwend. 27 (2008), 213-231. MR 2390543; doi: 10.4171/ZAA/1352; Zbl 05296726.
  • [21] K. Kropielnicka, Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type, Appl. Math. (Warsaw) 35 (2008), 155-175. MR 2438961; doi: 10.4064/am35-2-3; Zbl 05320658.
  • [22] K. Kropielnicka, L. Sapa, Estimate of solutions for differential and difference functional equations with applications to difference methods, Appl. Math. Comput. 217 (2011), 6206-6218. MR 2773364; doi: 10.1016/j.amc.2010.12.106; Zbl 05870884.
  • [23] T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A. Meyerhans, G. Bocharov, Numerical modelling of label - structured cell population growth using CFSE distribution data, Theoretical Biology and Medical Modelling 4 (2007), no.1, 1-26. doi: 10.1186/1742-4682-4-26.
  • [24] M. Malec, Sur une famille bi-paramétrique de schémas des différences finies pour l’équation parabolique sans dérivées mixtes, Ann. Polon. Math. 31 (1975), 47-54. MR 0383782; Zbl 03493813.
  • [25] M. Malec, Sur une famille bi-paramétrique de schémas des différences pour les systémes paraboliques, Bull. Acad. Polon. Sci. S´er. Sci. Math. Astronom. Phys. 23 (1975), no. 8, 871–875. MR 0431711; Zbl 03516578.
  • [26] M. Malec, Sur une famille biparamétrique de schémas des différences finies pour un systéme d’équations paraboliques aux dérivées mixtes et avec des conditions auxm limites du type de Neumann, Ann. Polon. Math. 32 (1976), 33-42. MR 0400737; Zbl 03510797.
  • [27] K. W. Morton, D. F. Mayers, Numerical Solution of Partial Differential Equations, Cambridge University Press (1994). MR 1312611; Zbl 00702539.
  • [28] C. V. Pao, Finite difference reaction - diffiusion systems with coupled boundary conditions and time delays, J. Math. Anal. Appl. 272 (2002), 407-434. MR 1930849; doi: 10.1016/S0022-247X(02)00145-2.
  • [29] M. Netka, Implicit difference schemes for mixed problems related to parabolic functional differential equations, Ann. Polon. Math. 100 (2011), 237-259. MR 2772235; doi: 10.4064/ap100-3-3; Zbl 05843939.
  • [30] K. Prządka, Difference methods for non-linear partial differential - functional equations of first order, Mathematische Nachrichten 138 (1988), 105-123. MR 0975203; doi: 10.1002/mana.19881380108.
  • [31] E. Puźniakowska-Gałuch, Implicit difference methods for nonlinear first order partial functional differential systems, Appl. Math. (Warsaw) 37 (2010), 459-482. MR 2738165; doi: 10.4064/am37-4-5; Zbl 05834882.
  • [32] L. Sapa, A finite difference method for quasilinear and nonlinear differential functional parabolic equations with Dirichlet’s condition, Ann. Polon. Math. 93 (2008), 113-133. MR 2385376; doi: 10.4064/ap93-2-2.
  • [33] A. Szafrańska, Numerical methods for systems of nonlinear differential functional equations, Neural Parallel Sci. Comput. 17 (2009), no. 1, 17-30. MR 2553502; Zbl 05614000.
  • [34] A. Szafrańska, Difference functional inequalities and applications, Opuscula Math. 34, no. 2 (2014), 405-423. MR 3200264; doi: 10.7494/OpMath.2014.34.2.405; Zbl 06310266.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d87ec45e-785d-4090-887e-d69770a3d8bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.