PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The coefficient of head loss at the pipe bend 90° with the sliced bend

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The head loss is a decrease in compressive height caused by friction and direction changes of flow at the sliced bend. This method expected to provide is easy, fast, and economical. The elements of influence are the velocity of flow, the number of slices, average length of sliced walls, angle changes of the sliced, coefficient of friction, acceleration of gravity, and slope of the pipe. Equation for coefficient of head loss (Kb) is an analysis method for the head loss (hL) calculation. The analysis results that have obtained are the larger diameter of the pipe, and the more slices with a fixed discharge, the coefficient of hL becomes small. Conversely, if the diameter of the pipe is getting smaller, and the slice is getting less, then the coefficient of hL becomes bigger. This method, expected to give new knowledge in pipeline network applications, especially for the large diameter of pipelines.
Wydawca
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 22 poz., fot., rys., tab.
Twórcy
autor
  • Universitas Muhammadiyah Malang, Department of Civil Engineering, Jalan Raya Tlogomas 246 Malang, 65145, East Java, Indonesia
  • Universitas Brawijaya, Malang East Java, Indonesia
  • Universitas Brawijaya, Malang East Java, Indonesia
  • Universitas Brawijaya, Malang East Java, Indonesia
Bibliografia
  • ADJEI R.A.,MOHSIN A. 2014. Simulation-driven design optimization: A case study on a double 90 degree elbow bend. International Journal of Modeling and Optimization. Vol. 4. Iss. 6 p. 426–432. DOI 10.7763/IJMO.2014.V4.412.
  • CHOWDHURY R.R., ALAM M.M., SADRUL ISLAM A.K.M. 2016. Numerical modeling of turbulent flow through bend pipes [online]. Mechanical Engineering Research Journal. Vol. 10 p. 14–19. [Access 25.10.2019]. Available at: http://www.cuet. ac.bd/merj/vol.10/MERJ-03.pdf
  • DUTTA P., NANDI N. 2015a. Effect of Reynolds number and curvature ratio on single phase turbulent flow in pipe bends [online]. Mechanics and Mechanical Engineering. Vol. 19. Iss. 1 p. 5–16. [Access 25.10.2019]. Available at: https://www.researchgate.net/publication/282884519_Effect_of_Reynolds_number_and_curvature_ratio_on_single_phase_turbulent_flow_in_pipe_bends
  • DUTTA P., NANDI N. 2015b. Study on pressure drop characteristics of single phase turbulent flow in pipe bend for high Reynolds number [online]. ARPN – Journal of Engineering and Applied Sciences. Vol. 10. Iss. 5 p. 2221–2226. [Access 25.10.2019]. Available at: https://www.researchgate.net/ publication/282716633_Study_on_pressure_drop_ characteristics_of_single_phase_turbulent_flow_in_pipe_ bend_for_high_reynolds_number
  • DUTTA P., SAHA S.K., NANDI N., PAL N. 2016. Engineering science and technology, an international journal numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ε modeling. Engineering Science and Technology, an International Journal. Vol. 19(2) p. 904–910. DOI 10.1016/j.jestch.2015.12.005.
  • HELLSTRÖM L. H.O., ZLATINOV M.B., CAO G., SMITS A.J. 2013. Turbulent pipe flow downstream of a 90-degree bend. Journal Fluids Mechanics. Vol. 735. R7 p. 1–12. DOI 10.1017/ jfm.2013.534.
  • ISLAM M.S., BASAK A., SARKAR M.A.R., ISLAM M.Q. 2016. Study of minor loss coefficient of flexible pipes [online]. Global Journal of Research in Engineering : A Mechanical and Mechanical Engineering. Vol. 16. Iss. 4 p. 27–32. [Access 25.10.2019]. Available at: https://globaljournals.org/GJRE_ Volume16/3-Study-of-Minor-Loss-Coefficient.pdf
  • KIM J., YADAV M., KIM S. 2014. Characteristics of secondary flow induced by 90- degree elbow in turbulent pipe flow. Engineering Applications of Computational Fluid Mechanics. Vol. 8. Iss. 2 p. 229–239. DOI 10.1080/19942060.2014. 11015509.
  • KUMAR SAHA S.., NANDI N. 2017. Change in flow separation and velocity distribution due to effect of guide vane installed in a 90 [online]. Mechanics and Mechanical Engineering. Vol. 21. Iss. 2 p. 353–361. [Access 25.10.2019]. Available at: http://www.kdm.p.lodz.pl/articles/2017/21_2_12.pdf
  • LU X., LI B., HUANG L., ZHENG W., LIU J., WANG L. 2015. The establishment and verification of 90° elbow pipe with circular cross section internal pressure distribution model [online]. In: 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) p. 1836–1839. [Access 25.10.2019]. Available at: https://download.atlantispress.com/article/25840416.pdf
  • NAKAYAMA Y., BOUCHER R.F. 1998. Introduction to fluid mechanics. Woburn, MA. Butterworth-Heinemann. ISBN 978-0-340-67649-3 pp. 322.
  • NOORANI A., SARDINA G., BRANDT L., SCHLATTER P. 2015. Particle velocity and acceleration in turbulent bent pipe flows. Flow, Turbulence and Combustion. Vol. 21 p. 539–559. DOI 10.1007/s10494-015-9638-9.
  • NTENGWE F.W., CHIKWA M., WITIKA L.K. 2015. Evaluation of friction losses in pipes and fittings of process engineering plants [online]. International Journal of Scientific and Technology Research. Vol. 4. Iss. 10 p. 330–336. [Access 25.10.2019]. Available at: http://www.ijstr.org/final-print/ oct2015/Evaluation-Of-Friction-Losses-In-Pipes-And-Fittings-Of-Process-Engineering-Plants.pdf
  • PANTOKRATORAS A. 2016. Steady laminar flow in a 90° bend. Advances in Mechanical Engineering. Vol. 8. Iss. 9 p. 1–9. DOI 10.1177/1687814016669472.
  • RUDOLF P., DESOVA M. 2007. Flow characteristics of curved ducts [online]. Applied and Computational Mechanics. No. 1 (October 2007) p. 255–264. [Access 25.10.2019]. Available at: https://www.kme.zcu.cz/acm/old_acm/full_papers/acm_ vol1no1_p029.pdf
  • SPEDDING P.L., BENARD E., MCNALLY G.M. 2008. Fluid flow through 90-degree bends. Asia-Pacific Journal of Chemical Engineering. Vol. 12 p. 107–128. DOI 10.1002/apj. 5500120109.
  • SUMIDA M., SENOO T. 2015. Experimental investigation on pulsating flow in a bend. Proceedings of the International Proceedings of the International Conference on Heat Transfer and Fluid Flow. Vol. 27. Iss. 82 p. 26–33. DOI 10.11159/ jffhmt.2015.004.
  • WAHYUDI S., SOEPARMAN S., SOENOKO R., YUNIZAR R.A. 2016. Characteristics of two-phase fluid flow in pipe bends [online]. ARPN Journal of Engineering and Applied Sciences. Vol. 11. Iss. 4 p. 794–798. [Access 25.10.2019]. Available at: http://www.arpnjournals.org/jeas/research_papers/rp_2016/ jeas_0216_3723.pdf
  • WANG S., REN CH., SUN Y., YANG X., JIYUAN T. 2016. A study on the instantaneous turbulent flow field in a 90-degree elbow pipe with circular section. Science and Technology of Nuclear Installations. Vol. 2016. ID 5265748. DOI 10.1155/ 2016/5265748.
  • WANG Y., DONG Q., WANG P. 2015. Numerical investigation on fluid flow in a 90-degree curved pipe with large curvature ratio. Mathematical Problems in Engineering. Vol. 2015 (July 27, 2015). Art. ID 548262 p. 1–12. DOI 10.1155/2015/ 548262.
  • ZEGHADNIA L., DJEMILI L., HOUICHI L., NORDINE R. 2015. Efficiency of the flow in the circular pipe. Journal of Environmental Science and Technology. Vol. 8. Iss. 2 p. 42–58. DOI 10.3923/jest.2015.42.58.
  • ZHANG S., SU B., LIU J., LIU X., QI G., GE Y. 2018. Analysis of flow characteristics and flow measurement accuracy of the elbow with different diameters. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 9. DOI 10.1088/1755-1315/113/1/012231
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d87e83d4-be38-4304-ab02-79bf6c414203
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.