Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes a novel linear quadratic regulator (LQR) weight selection algorithm by synthesizing the algebraic Riccati equation (ARE) with the Lagrange multiplier method for command following applications of a 2 degree of freedom (DoF) torsion system. The optimal performance of LQR greatly depends on the elements of weighting matrices Q and R. However, normally these weighting matrices are chosen by a trial and error approach which is not only time consuming but cumbersome. Hence, to address this issue, blending the design criteria in time domain with the ARE, we put forward an algebraic weight selection algorithm, which makes the LQR design both simple and modular. Moreover, to estimate the velocity of a servo angle, a high gain observer (HGO) is designed and integrated with the LQR control scheme. The efficacy of the proposed control scheme is tested on a benchmark 2 DoF torsion system for a trajectory tracking application. Both the steady state and dynamic characteristics of the proposed controller are assessed. The experimental results accentuate that the proposed HGO based LQR scheme can guarantee the system to attain the design requirements with minimal vibrations and tracking errors.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
55--75
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wz.
Twórcy
autor
- School of Electrical Engineering, VIT University Vellore, Tamilnadu, 632014, India
autor
- Eindhoven University of Technology 5612 AZ Eindhoven, the Netherlands
Bibliografia
- [1] da Fonseca Neto J.V., Abreu I.S., da Silva F.N., Neural-Genetic Synthesis for State-Space Controllers Based on Linear Quadratic Regulator Design for Eigenstructure Assignment, IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics, vol. 40, no. 2, pp. 266-285 (2010).
- [2] Das S., Pan I., Halder K., Das S., Gupta A., LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index, Applied Mathematical Modelling, vol. 37, no. 6, pp. 4253-4268 (2013).
- [3] Bevilacqua R., Lehmann T., Romano M., Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft, Acta Astronautica, vol. 68, no. 8, pp. 1260-1275 (2011).
- [4] Tao C., Taur J., Chen Y., Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system, Fuzzy Sets and Systems, vol. 161, no. 15, pp. 2081-2103 (2010).
- [5] Balandat M., Zhang W., Abate A., On infinite horizon switched LQR problems with state and control constraints, Systems & Control Letters, vol. 61, no. 4, pp. 464-471 (2012).
- [6] Wang L., Ni H., Zhou W., Pardalos P.M., Fang J., Fei M., MBPOA-based LQR controller and its application to the double-parallel inverted pendulum system, Engineering Applications of Artificial Intelligence, vol. 36, pp. 262-268 (2014).
- [7] Niknezhadi A., Allué-Fantova M., Kunusch C., Ocampo-Martínez C., Design and implementation of LQR/LQG strategies for oxygen stoichiometry control in PEM fuel cells based systems, Journal of Power Sources, vol. 196, no. 9, pp. 4277-4282 (2011).
- [8] Liu H., Lu G., Zhong Y., Robust LQR Attitude Control of a 3-DoF Laboratory Helicopter for Aggressive Maneuvers, IEEE Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4627-4636 (2013).
- [9] Sunar M., Rao S.S., Optimal Selection of Weighting Matrices in Integrated Design of Structures/ Controls, AIAA Journal, vol. 31, no. 4, pp. 714-720 (1993).
- [10] Ohta H., Kakinuma M., Nikiforuk P.N., Use of Negative Weights in Linear Quadratic Regulator Synthesis, Journal of Guidance, Control and Dynamics, vol. 14, no. 4, pp. 791-796 (1991).
- [11] Ochi Y., Kanai K., A New Way of Pole Placement in LQR and its Application to Flight Control, Proc. Conf. AIAA Guidance, Navigation and Control, pp. 1295-1301 (1993).
- [12] Hiroe T., Morimoto T., Inoue S.I., Takamatsu H., A New Method for Selecting Weighting Matrices of LQ Regulators and its Application to an Industrial Turbine, Proc. 32nd Conf. on Decision and Control, pp. 3333-3334 (1993).
- [13] Choi J.W., Seo Y.B., LQR Design with Eigenstructure Assignment Capability, IEEE Transactions on Aerospace and Electronic System, vol. 35, no. 2, pp. 700-708 (1999).
- [14] Ang K.K., Wang S.Y., Quek S.T., Weighted Energy Linear Quadratic Regulator Vibration Control of Piezoelectric Composite Plates, Smart Materials and Structures, vol. 11, no. 1, pp. 98-106 (2002).
- [15] Robandia I., Nishimori K., Nishimura R., Ishihara N., Optimal feedback control design using genetic algorithm in multimachine power system, Electrical Power and Energy Systems, vol. 23, no. 4, pp. 263-271 (2001).
- [16] Panda S., Padhy N.P., Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design, Applied Soft Computing, vol. 8, no. 4, pp. 1418-1427 (2008).
- [17] Tsai S.J., Huo C.L., Yang Y.K., Sun T.Y., Variable feedback gain control design based on particle swarm optimizer for automatic fighter tracking problems, Applied Soft Computing, vol. 13, no. 1, pp. 58-75 (2013).
- [18] Vinodh K.E., Jerome J., An Adaptive Particle Swarm Optimization Algorithm for Robust Trajectory Tracking of a Class of Under Actuated System, Archives of Electrical Engineering, vol. 63, no. 3, pp. 345-365 (2014).
- [19] Desineni S.N., Optimal Control Systems, CRC press (2003).
- [20] Oral O., Çetin L., Uyar E., A novel method on selection of Q And R matrices in the theory of optimal control, International Journal of Systems Control, vol. 1, no. 2, pp. 84-92 (2010).
- [21] Wang G., Observer based feedback control methods for an under actuated robot system. M.S Thesis, Simon Fraser University, Canada, November (2003).
- [22] Khalil H.K., Praly L., High gain observers in nonlinear feedback control, International Journal of Robust and Nonlinear Control, vol. 24, no. 6, pp. 993-1015 (2014).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d87de037-91fe-4e6a-b66e-1dd66305805f