PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Mechanical Properties of Dissimilar Resistance Spot Welded Zn-Coated DP800–TBF1180 Automotive Steels Using MFDC Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of advanced high-strength steel in the automotive industry is increasing in last decade. This is due to the restrictions to reduce fuel consumption and thereby decrease harmful carbon dioxide emissions. This paper aims to investigate welding properties of dissimilar resistance spot welded hot dip galvanized DP800-TBF1180 automotive steels using MFDC (Mid Frequency Direct Current) technology. LME crack occurrence due to the zinc coating was determined by magnetic particle test. The mechanical properties of welded joints were determined by tensile-shear, cross-tension and hardness measurements. The micro structural characterization was also performed in the weld zones of the joints. The appropriate welding parameter range were selected for welding processes by MFDC technology. Therefore, LME crack formation were not observed according to magnetic particle test. The highest strength was obtained as 17.60 kN and 5.51 kN by tensile-shear and cross tension tests, respectively with a welding current of 8 kA. In addition, a soft zone was found in the HAZ for both base metals. The hardness decrease in HAZ is more pronounced on the TBF1180 side. The soft zone hardness values of the sample S4 were approximately 330 HV, and the hardness values of the base material were measured in the range of 376-386 HV.
Twórcy
  • Coşkunöz Mold Machine, R&D Center, Bursa, Turkey
  • Coşkunöz Mold Machine, R&D Center, Bursa, Turkey
  • Karabük University, Department of Manufacturing Engineering, Karabük, Turkey
Bibliografia
  • [1] Automotive Congress, Shengyang, China, October 30th, (2008).
  • [2] M. Hıdıroğlu, T.A. Başer, O. Tekelioğlu, N. Kahraman, Liquid metal embrittlement in resistance spot welding of third generation steels. 10th International Automotive Technologies Congress, 1546-1555 (2020).
  • [3] E. Tolf, Challenges in resistance welding of ultrahigh strength steels. First ed., Stockholm, Sweden, ISBN 978-91-7595-577-3 (2015).
  • [4] D. Bhattacharya, Liquid metal embrittlement during resistance spot welding of Zn-coated high strength steels. Mater. Sci. Technol. 34 (15), 1809-1809 (2018). DOI: https://doi.org/10.1080/02670836.2018.1461595
  • [5] A.R. Marder, Metallurgy of zinc-coated steel. Progress in Materials Science 45, 191-271 (2000). DOI: https://doi.org/10.1016/S0079-6425(98) 00006-1
  • [6] D.R. Sigler, Observations of liquid metal-assisted cracking in resistance spot welds of zinc-coated advanced high strength steels. Sheet Met. Weld. Conf. XIII, Livonia, Mich., pp. 1-17 (2008).
  • [7] H. Gaul, S. Brauser, G. Weber, M. Rethmeier, Methods to obtain weld discontinuities in spot-welded joints made of advanced high-strength steels. Welding in the World 55, 99-106 (2011). DOI: https://doi.org/10.1007/BF03321547
  • [8] R. Ashiri, M.A. Haque, C.W. Ji, M. Shamanian, H.R. Salimijazi, Y.D. Park, Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels. Scripta Materialia 109 (1), 6-10 (2015). DOI: https://doi.org/10.1016/j.scriptamat.2015.07.006
  • [9] D.Y. Choi, A. Sharma, S.H. Uhm, J.P. Jung, Liquid metal embrittlement of resistance spot welded 1180 TRIP steel: Effect of electrode force on cracking behavior. Metals and Materials International 25, 219-228 (2018). DOI: https://doi.org/10.1007/s12540-018-0180-x
  • [10] W. Jin, A. Lalachan, S.P. Murugan, C. Ji, Y. Park, Effect of Process Parameters and Nugget Growth Rate on Liquid Metal Embrittlement (LME) Cracking in the Resistance Spot Welding of Zinc-651 Coated Steels. Journal of Welding and Joining 40 (6),464-467 (2022). DOI: https://doi.org/10.5781/JWJ.2022.40.6.2
  • [11] S.P. Murugan, V. Vijayan, C. Ji, Y.D. Park, Four types of LME cracks in RSW of Zn-coated AHSS. Welding Journal, 75-s, (2020). DOI: https://doi.org/10.29391/2020.99.008
  • [12] R. Sierlinger, M. Gruber, A cracking good story about liquid metal embrittlement during spot welding of advanced high strength steels. Voestalpine White Paper Stahl GmbH. https://www.voestalpine.com/division_stahl/content/download/52624/655464/file/VAST-W17008A%20White%20Paper%20Sierlinger.pdf
  • [13] T.A. Başer, Resistance Spot Welding of Zn-Coated Third Generation Automotive Steels Using Mid-Frequency Direct Current Technology. Trans. Indian. Inst. Met. 76, 49-57 (2023). DOI: https://doi.org/10.1007/s12666-022-02771-7
  • [14] M. Kimchi, D.H. Phillips, Resistance spot welding: fundamentals and applications for the automotive industry. Synthesis Lectures on Mech. Eng. 1 (2), i-115 (2017). DOI: https://doi.org/10.2200/S00792ED1V01Y201707MEC005
  • [15] R. Ashiri, M. Shamanian, H.R. Salimijazi, M.A. Haque, J.H. Bae, C.W. Ji, K.G. Chin, Y.D. Park, Liquid metal embrittlement-free welds of zn-coated twinning induced plasticity steels. Scr. Mater. 114 (1), 41-47 (2016).
  • [16] Worldautosteel Liquid Metal Embrittlement Study. (2020). https://www.worldautosteel.org/projects/liquid-metal-embrittlement/
  • [17] E. Biro, Y. Zhou, Effect of multiple pulse resistance spot welding schedules on liquid metal embrittlement severity. Journal of Manufacturing Science and Engineering 141 (10), 1-9 (2019). DOI: https://doi.org/10.1115/1.4044099
  • [18] İ. Yilmaz, A.Y. Bilici, H. Aydin, Resistance spot weldability of TBF steel sheets with dissimilar thickness. Metall. Res. Technol. 117, 620 (2020). DOI: https://doi.org/10.1051/metal/2020071
  • [19] M. Pouranvari, S.P.H. Marashi, Critical review of automotive steels spot welding: process, structure and properties. Sci. Technol. Weld. Join. 18 (5), 361-403 (2013).
  • [20] N.T. Williams, J.D. Parker, Review of resistance spot welding of steel sheets - part 1 modelling and control of weld nugget formation. Int. Mater. Rev. 49 (2), 45-75 (2004).
  • [21] Y. Luo, J. Liu, H. Xu, C. Xiong, L. Liu, Regression modeling and process analysis of resistance spot welding on galvanized steel sheet. Mater. Des. 30 (7), 2547-2555 (2009).
  • [22] J. Mendala, Liquid metal embrittlement of steel with galvanized coatings. IOP Conf. Ser. Mater. Sci. Eng. 35 (1) (2012).
  • [23] Y.G. Kim, I.J. Kim, J.S. Kim, Y. Il. Chung, D.Y. Choi, Evaluation of surface crack in resistance spot welds of Zn- Coated steel. Mater. Trans. 55, 171 (2014).
  • [24] Z. Ling, T. Chen, L. Kong, M. Wang, H. Pan, M. Lel, Liquid Metal Embrittlement Cracking During Resistance Spot Welding of Galvanized Q&P980 Steel. Metall. Mater. Trans. A 50, 5128-5142 (2019). DOI: https://doi.org/10.1007/s11661-019-05388-6
  • [25] H. Aydın, İ. Yılmaz, A.Y. Bilici, Investigation of microstructure and mechanical properties of dissimilar electrical resistance spot welded TBF/DP600 steel sheets. Journal of the Faculty of Engineering and Architecture of Gazi University 37, 2 609-624 (2022).
  • [26] M. Stadler, M. Gruber, R. Schnitzer, C. Hofer, Microstructural characterization of a double pulse resistance spot welded 1200 MPa TBF steel. Welding in the World, Le Soudage Dans Le Monde 64 (4), ( 2019). DOI: https://doi.org/10.1007/s40194-019-00835-9
  • [27] S.S.G. Banadkouki, E. Fereiduni, Effect of prior austenite carbon partitioning on martensite hardening variation in a low alloy ferrite-martensite dual phase steel. Mater. Sci. Eng. A. 619, 129-136 (2014).
  • [28] X.Q. Zhang, G.L. Chen, Y.S. Zhang, Characteristics of electrode wear in resistance spot welding dual-phase steels. Materials & Design 29, 1, 279-283 (2008).
  • [29] Y. Kaya, N. Kahraman, The effects of electrode force, welding current and welding time on the resistance spot weldability of pure titanium. The International Journal of Advanced Manufacturing Technology 60 (1-4), 127-134 (2012).
  • [30] S. Fukumoto, K. Fujiwara, S. Toji, A. Yamamoto, Small-scale resistance spot welding of austenitic stainless steels. Materials Science and Engineering A 492 (1-2), 243-249 (2008).
  • [31] D.Q. Sun, B. Lang, D.X. Sun, J.B. Li, Microstructures and mechanical properties of resistance spot welded magnesium alloy joints, Materials Science and Engineering A 460-461, 494-498 (2007).
  • [32] P. Marashi, M. Pouranvari, S. Amirabdollahian, A. Abedi, M. Goodarzi, Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels. Materials Science and Engineering A 480 (1-2), 175-180 (2008).
  • [33] M. Pouranvari, E. Ranjbarnoodeh, DP600/AISI1008 dissimilar resistance spot welding: on the reduction of energy absorption at high heat input welding condition research Journal of Applied Sciences, Engineering and Technology, 1-4, (2012).
  • [34] P.R. Spena, M.D. Maddis, F. Lombardi Mechanical strength and fracture of resistance spot welded advanced high strength steels. Procedia Engineering 109, 450-456 (2015). DOI: https://doi.org/10.1016/j.proeng.2015.06.262
  • [35] V.H.B. Hernandez, S.K. Panda, Y. Okita, N.Y. Zhou, A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation. Journal of Materials Science 45 (6), 1638-1647 (2010).
  • [36] V.H.B. Hernandez, M.L. Kuntz, M.I. Khan, Y. Zhou, Influence of microstructure and weld size on the mechanical behaviour of dissimilar AHSS resistance spot welds. Science and Technology of Welding and Joining 13 (8), 769-776 (2008).
  • [37] X. Sun, E.V. Stephens, M.A. Khaleel, Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high-strength steel spot welds. Welding Journal 86 (1), 18-25 (2007).
  • [38] M. Pouranvari, S.P.H. Marashi, D.S. Safanama, Failure mode transition in AHSS resistance spot welds. Part II: experimental investigation and model validation. Materials Science and Engineering A 528 (29-30), 8344-8352 (2011).
  • [39] A. Yürük, N. Kahraman, Weld zone characterization of stainless steel joined through electric resistance spot welding. Int. J. Adv. Manuf. Technol. 92, 2975-2986 (2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d87d1b48-d204-4fea-9e88-24bbef15df1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.