PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discussion around IR material and structure issues to go toward high performance small pixel pitch IR HOT FPAs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
In the last decade, infrared imaging detectors trend has gone for smaller pixels and larger formats. Most of the time, this scaling is carried out at a given total sensitive area for a single focal plane array. As an example, QVGA 30 μm pitch and VGA 15 μm pitch exhibit exactly the same sensitive area. SXGA 10 μm pitch tends to be very similar, as well. This increase in format is beneficial to image resolution. However, this scaling to even smaller pixels raises questions because the pixel size becomes similar to the IR wavelength, but also to the typical transport dimensions in the absorbing material. Hence, maintaining resolution for such small pixel pitches requires a good control of the modulation transfer function and quantum efficiency of the array, while reducing the pixel size. This might not be obtained just by scaling the pixel dimensions. As an example, bulk planar structures suffer from excessive lateral diffusion length inducing pixel-to-pixel cross talk and thus degrading the modulation transfer function. Transport anisotropy in some type II superlattice structures might also be an issue for the diffusion modulation transfer function. On the other side, mesa structures might minimize cross talk by physically separating pixels, but also tend to degrade the quantum efficiency due to a non-negligible pixel fill factor shrinking down the pixel size. This paper discusses those issues, taking into account different material systems and structures, in the perspective of the expected future pixel pitch infrared focal plane arrays.
Twórcy
  • CEA-LETI, 17 des Martyrs St., 38054 Grenoble, France
  • CEA-LETI, 17 des Martyrs St., 38054 Grenoble, France
  • CEA-LETI, 17 des Martyrs St., 38054 Grenoble, France
  • CEA-LETI, 17 des Martyrs St., 38054 Grenoble, France
  • CEA-LETI, 17 des Martyrs St., 38054 Grenoble, France
  • Lynred, BP 21, 38113 Veurey-Voroize, France
  • Lynred, BP 21, 38113 Veurey-Voroize, France
Bibliografia
  • [1] Lefoul, X. et al. New SOFRADIR 10μm pixel pitch infrared products. Proc. SPIE 9249, 924911 (2014). https://doi.org/10.1117/12.2069254
  • [2] Lutz, H. et al. Ultra-compact high-performance MCT MWIR engine. Proc. SPIE 10177, 101771A (2017). https://doi.org/10.1117/12.2262361
  • [3] Shkedy, L. et al. Development of 10μm pitch XBn detector for low SWaP MWIR applications. Proc. SPIE 9819, 98191D (2016). https://doi.org/10.1117/12.2220395
  • [4] Gravrand O. et al. Design of a small pitch (7.5μm) MWIR HgCdTe array operating at high temperature (130K) with high imaging performances. Proc. SPIE 12107, 121070U (2022). https://doi.org/10.1117/12.2618852
  • [5] Jeckells, D., Mcewen, R. K., Bains, S. & Herbert, M. Further developments of 8 μ m pitch MCT pixels at Finmeccanica (formerly Selex ES). Proc. SPIE 9819, 98191X (2016). https://doi.org/10.1117/12.2223019
  • [6] Armstrong, J. M., Skokan, M. R., Kinch, M. & Luttmer, J. D. HDVIP five-micron pitch HgCdTe focal plane arrays. Proc. SPIE 9070, 907033 (2014). https://doi.org/10.1117/12.2053286
  • [7] Tennant, W. E. et al. Small-pitch HgCdTe photodetectors. J. Electron. Mater. 43, 3041-3046 (2014). https://doi.org/10.1007/s11664-014-3192-4
  • [8] Shafer T. et al. High operating temperature (HOT) midwave infrared (MWIR) 6 μm pitch camera core performance and maturity. Proc. SPIE 12107, 121070V (2022). https://doi.org/10.1117/12.2618719
  • [9] Hill, C. J. et al. The VISTA industrial consortium: structure and accomplishments of a government-industry development partnership. Proc. SPIE 12107, 121070P (2022). https://doi.org/10.1117/12.2618983
  • [10] Kinch, M. The rationale for ultra-small pitch IR systems. Proc. SPIE 9070, 907032 (2014). https://doi.org/10.1117/12.2051335
  • [11] Holst, G. & Driggers, R. Small detectors in infrared system design. Opt. Eng. 51, 096401 (2012). https://doi.org/10.1117/1.OE.51.9.096401
  • [12] Gravrand, O. et al. Shockley-Read-Hall lifetime study and implication in HgCdTe photodiodes for IR detection. J. Electron. Mater. 47, 5680-5690 (2018). https://doi.org/10.1007/s11664-018-6557-2
  • [13] Gravrand, O., Desplanches, J. C., Delbegue, C., Mathieu, G. & Rothman, J. Study of the spatial response of reduced pitch HgCdTe dual-band detector arrays. J. Electron. Mater. 35, 1159-1165 (2006). https://doi.org/10.1007/s11664-006-0236-4
  • [14] Yèche, A. et al. MTF characterization of small pixel pitch IR cooled photodiodes using EBIC. J. Electron. Mater. 49, 6900-6907 (2020). https://doi.org/10.1007/s11664-020-08253-0
  • [15] Gravrand, O. et al. MTF Issues in small-pixel-pitch planar quantum IR detectors. J. Electron. Mater. 43, 3025-3032 (2014). https://doi.org/10.1007/s11664-014-3185-3
  • [16] Berthoz, J. Caractérisation et modélisation par éléments finis des performances des détecteurs infra-rouge refroidis à petits pas. (Université Grenoble Alpes, 2016). (in French)
  • [17] Pinkie, B. & Bellotti, E. Numerical simulation of the modulation transfer function in HgCdTe detector arrays. J. Electron. Mater. 43, 2864-2873 (2014). https://doi.org/10.1007/s11664-014-3134-1
  • [18] Lee, D. L. et al. Law 19: The ultimate photodiode performance metric. Proc. SPIE 11407, 114070X (2020). https://doi.org/10.1117/12.2564902
  • [19] Gravrand, O. & Gidon, S. Electromagnetic modeling of n-on-p HgCdTe back-illuminated infrared photodiode response. J. Electron. Mater. 37, 1205-1211 (2008). https://doi.org/10.1007/s11664-008-0478-4
  • [20] Maimon, S. & Wicks, G. W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  • [21] Klipstein, P. XBn barrier photodetectors based on InAsSb with high operating temperatures. Opt. Eng. 50, 061002 (2011). https://doi.org/10.1117/1.3572149
  • [22] Gravrand, O., Boulard, F., Ferron, A., Ballet, P. & Hassis, W. A new nBn IR detection concept using HgCdTe material. J. Electron. Mater. 44, 3069 (2015). https://doi.org/10.1007/s11664-015-3821-6
  • [23] Ting, D., Soibel, A., Höglund, L. & Gunapala, S. D. Theoretical aspects of minority carrier extraction in unipolar barrier infrared detectors. J. Electron. Mater. 44, 3036-3043 (2015). https://doi.org/10.1007/s11664-015-3756-y
  • [24] Ting, D., Soibel, A. & Gunapala, S. Type-II superlattice hole effective masses. Infrared Phys. Technol. 84, 102-106 (2017). https://doi.org/10.1016/j.infrared.2016.10.014
  • [25] Klipstein, P. C. Minority carrier lifetime and diffusion length in type II superlattice barrier devices. Infrared Phys. Technol. 96, 155-162 (2019). https://doi.org/10.1016/j.infrared.2018.11.022
  • [26] Arounassalame, V. et al. Anisotropic transport investigation through different etching depths in InAs/InAsSb T2SL barrier midwave infrared detector. Infrared Phys. Technol. 126, 104315 (2022). https://doi.org/10.1016/j.infrared.2022.104315
  • [27] Rafol, S. et al. Modulation transfer function measurements of type-II mid- wavelength and long-wavelength infrared superlattice focal plane arrays. Infrared Phys. Technol. 96 251-261 (2019). https://doi.org/10.1016/j.infrared.2018.11.006
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d87cb8a7-b0ec-4f3c-a4d7-ffa617d116a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.