PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ballistic Analysis of Missile Propulsion in a Perforated Barrel Launcher

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents a ballistic analysis of the propulsion of a smart counter-projectile in an active protection system. In order to reduce the pressure of the propellant gases inside the semi-closed barrel of the launcher and to mitigate the effects of the recoil of the launcher, a perforated barrel was chosen. For the system considered, a physical model and a mathematical model of the propulsion of a rocket projectile in a perforated barrel, as well as a computer program, were developed. The gas pressures inside the combustion chamber of the rocket engine and the barrel, as well as the velocity and travel of the missile are the main results from the solution of the presented mathematical model. Based on the resulting calculations, the influence of the holes in the perforated barrel on the operating conditions of the rocket engine, as well as the pressure of propellant gases and the missile velocity inside the barrel were analysed. The use of a perforated barrel caused a significant reduction in the total impulse of the propellant pressure inside the barrel. Based on experimental tests of the barrel launcher-missile assembly, a decrease (about 50%) in the muzzle velocity of the missile was observed. The mathematical model of the interior ballistics presented here allows the missile propulsion, both in a monolithic- as well as a perforated barrel-launcher, to be investigated.
Rocznik
Strony
475--491
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, 2 gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechatronics, Armament and Aerospace, 2 gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
Bibliografia
  • [1] Madhu, V.; Balakrishna Bhat, T. Armour Protection and Affordable Protection for Futuristic Combat Vehicles. Def. Sci. J. 2011, 61(4): 394-402.
  • [2] Flores-Johnson, A.E.; Saleh, M.; Edwards, L. Ballistic Performance of Multilayered Metallic Plates Impacted by a 7.62-mm APM2 Projectile. Int. J. Impact Eng. 2011, 38(12): 1022-1032.
  • [3] Kędzierski, P.; Morka, A.; Sławiński, G.; Niezgoda, T. Optimization of Twocomponent Armour. Bull. Pol. Ac.: Tech. 2015, 63(1): 173-179.
  • [4] Stanisławek, S.; Morka, A.; Niezgoda, T. Pyramidal Ceramic Armour Ability to Defeat Projectile Threat by Changing Its Trajectory. Bull. Pol. Ac.: Tech. 2015, 63(4): 843-849.
  • [5] Panowicz, R.; Niezgoda, T. Experimental Studies on Protection Systems of Military Vehicles against RPG Type Missiles. Solid State Phenom. 2016, 240: 244-249.
  • [6] Niezgoda, T.; Panowicz, R.; Sybilski, K.; Barnat, W. Numerical Analysis of a Shell with a Main Charge Warhead Stroke into a Bar Armour with Square Section. J. KONES Powertrain and Transport 2010, 17(3): 327-332.
  • [7] Dean, E.S. Active and Reactive Vehicle Protection Systems. European Security & Defence 2019, https://euro-sd.com/2019/05/articles/13297/active-and-reactivevehicle-protection-systems/ [accessed on 2020-10-18].
  • [8] Wiśniewski, A. Research of ERAWA-1 and ERAWA-2 Reactive Cassettes. Problemy Mechatroniki. Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa (Problems of Mechatronics. Armament, Aviation, Safety Engineering) 2019, 10(3):9-18.
  • [9] Liden, E.; Helte, A.; Lundgren, J. Influence of Intermediate Layers in Reactive Armours Modules on the Protection Capability. Proc. 31st Int. Symp. Ballistics, Hyderabad, India, 2019, vol. 2, 1260-1271.
  • [10] Kupidura, P.; Leciejewski, Z.; Surma, Z.; Zahor, M. Theoretical and Experimental Investigations on Rocket Propulsion of Counterprojectile of Active Protection System. Proc. 29th Int. Symp. Ballistics, Edinburgh, Scotland, 2016, vol. 1, 681-691.
  • [11] Surma, Z.; Zahor, M.; Kupidura, P.; Leciejewski, Z. Preliminary Studies of a Propellant System for the Counterprojectile of an Active Protection System. Problemy Mechatroniki. Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa (Problems of Mechatronics. Armament, Aviation, Safety Engineering) 2017, 8(2):33-42.
  • [12] Surma, Z.; Leciejewski, Z.; Dzik A.; Białek, M. Theoretical and Experimental Investigations on Rocket Propulsion System of Projectile Intended for Vehicle Active Protection System. Mater. Wysokoenerg. (High Energ. Mater.) 2017, 7:44-52.
  • [13] Carlucci E.D.; Jacobson S.S. Ballistics: Theory and Design of Guns and Ammunition. 2nd ed., CRC Press Taylor & Francis Group, Boca Raton, 2014.
  • [14] Serebryakov, M.E. Internal Ballistics of Gun Systems and Solid Rockets. (in Russian) Oborongiz, Moscow, 1962.
  • [15] Mahjub, A.; Mazlan, N.M.; Abdullah, M.Z.; Azam, Q. Design Optimization of Solid Rocket Propulsion: a Survey of Recent Advancements. J. Spacecr. Rockets 2020, 57(1): 3-11.
  • [16] Zeping, W.; Donghui, W.; Weihua, Z.; Około, P.; Yang, F. Solid-rocket-motor Performance-Matching Design Framework. J. Spacecr. Rockets 2017, 54(3):698-707.
  • [17] Kuentzmann, P. Introduction to Solid Rocket Propulsion. NATO Report No. RTOEN-023, 2004, 1-16.
  • [18] Villanueva, F.M.; He, L.S.; Xu, D.J. Solid Rocket Motor Design Optimization using Genetic Algorithm. Adv. Mater. Res. 2014, 905: 502-506.
  • [19] Terzic, J.; Zecevic, B.; Baskarad, M.; Catovic, A.; Serdarevic-Kadic, S. Prediction of Internal Ballistic Parameters of Solid Propellant Rocket Motors. Problemy Mechatroniki. Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa (Problems of Mechatronics. Armament, Aviation, Safety Engineering) 2011, 2(4): 7-26.
  • [20] Tola, C.; Nikbay, M. Internal Ballistic Modeling of a Solid Rocket Motor by Analytical Burnback Analysis. J. Spacecr. Rockets 2018, 56(2): 1-19.
  • [21] Zygmunt, B.; Surma, Z.; Leciejewski, Z.; Motyl, K.; Rasztabiga, T. Modelling and Verification of Solid Propellant Rocket Motor Operation. Cent. Eur. J. Energ. Mater. 2016, 13(4): 944-956.
  • [22] Cavallini, E.; Favini, B.; Giacinto, M.D.; Serraglia, F. Internal Ballistics Simulation of a NAWC Tactical SRM. J. Appl. Mech. 2011, 78(5): 051018 (8 pages).
  • [23] Hill, R.; McLeod, L. Analysis of Inter-chamber Energy and Mass Transport in High-Low Pressure Gun Systems. Proc. 28th Int. Symp. Ballistics, Atlanta, USA, 2014, vol. 1, 459-470.
  • [24] Razdan, M.K.; Kuo, K.K. Erosive Burning of Solid Propellant. In: Fundamentals of Solid-Propellant Combustion. Progress in Astronautics and Aeronautics. (Kuo, K.K.; Summerfield, M., Eds.) American Institute of Aeronautics and Astronautics, Washington. 1984, vol. 90, pp. 515-598.
  • [25] Abdelaziz, A.; Guozhu, L.; Elsayed, A. Parameters Affecting the Erosive Burning of Solid Rocket Motor. MATEC Web Conf. 2018, 153: 03001.
  • [26] Ma, Y.; Bao, F.; Hui, W.; Liu Y.; Wei, R. An Approach to Analysing Erosive Characteristics of Two-channel Combustion Chambers. Int. J. Aerosp. Eng. 2019, DOI: 10.1155/2019/2974537.
  • [27] Safta, D.; Ion, I. Towards the Effects of Initial Grain Temperature and Erosive Burning on the Solid Propellant Combustion. INCAS Bull. 2018, 10(4): 125-140.
  • [28] Image Systems Motion Analysis, TEMA Motion. from http://www.imagesystems. se/tema/, [accessed on 2019-08-03].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d877d474-99cb-49f7-a708-0d21881ade10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.