Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article describes the studies of the mechanical properties of the martensitic structure of C45 steel, obtained as a result of heat treatment. This steel was subjected to high tempering, within the temperature range of 500 ÷ 700°C (every 50°C) and for various exposure times, from 15 minutes to 23 hours. Moreover, martensitic steel was subjected to tests by quenching at a temperature of 850°C for 20 minutes and then tempering it for 1 hour, within the temperature range of 50 ÷ 800°C (every 50°C). The resulting steel samples were subjected to strength tests, that is, to tensile and hardness tests and also to tests on the micro-structure. The results of these studies are presented and discussed, in detail, in terms of their practical application.
Wydawca
Rocznik
Tom
Strony
306--315
Opis fizyczny
Bibliogr. 34 poz., fig., tab.
Twórcy
autor
- University of Zielona Góra, Faculty of Mechanical Engineering, ul. Prof. Szafran 4, 65-516 Zielona Góra, Poland
autor
- University of Zielona Góra, Faculty of Mechanical Engineering, ul. Prof. Szafran 4, 65-516 Zielona Góra, Poland
autor
- Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
autor
- University of West Bohemia, Faculty of Mechanical Engineering, Department of Industrial Engineering and Management, 8 Univerzitni Str., 30614 Plzen, Czech Republic
autor
- Wroclaw University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
- 1. Muhlbauer A., Von Starck A., Kramer C. Handbook of Thermoprocessing Technologies. Vulkan-Verlag GmbH, Germany, 2007.
- 2. Ashby M.F., Shercliff H., Cebon D. Materials: engineering, science, processing and design. Butterworth-Heinemann, 2018.
- 3. Verein Deutscher Eisenhüttenleute (ed.). Steel: a handbook for materials research and engineering. Volume 1: Fundamentals. Springer, 1992.
- 4. Verein Deutscher Eisenhüttenleute (ed.). Steel: a handbook for materials research and engineering. Volume 2: Applications. Springer, 1993.
- 5. Krauss G. Steels: processing, structure, and performance. Asm International, 2015.
- 6. Dossett J.L., Boyer H.E. Practical heat treating. Asm International, 2006.
- 7. Galindo-Nava E.I., Rivera-Díaz-del-Castillo P.E.J. Understanding the factors controlling the hardness in martensitic steels. Scripta Materialia 2016, 110, 96-100.
- 8. Jia Q., Guo W., Wan Z., Peng Y., Zou G., Tian Z., Zhou Y.N. Microstructure and mechanical properties of laser welded dissimilar joints between QP and boron alloyed martensitic steels. Journal of Materials Processing Technology 2018, 259, 58-67.
- 9. Rashidi M., Johansson L., Andrén H.O., Liu, F. Microstructure and mechanical properties of two Z-phase strengthened 12% Cr martensitic steels: the effects of Cu and C. Materials Science and Engineering: A 2017, 694, 57-65.
- 10. Puype A., Malerba L., De Wispelaere N., Petrov R., Sietsma, J. Effect of W and N on mechanical properties of reduced activation ferritic/martensitic EUROFER-based steel grades. Journal of Nuclear Materials 2018, 502, 282-288.
- 11. Hojo T., Kobayashi J., Sugimoto K.I., Nagasaka A., Akiyama, E. Effects of Alloying Elements Addition on Delayed Fracture Properties of Ultra High-Strength TRIP-Aided Martensitic Steels. Metals 2020, 10(1), 6, https://doi.org/10.3390/met10010006.
- 12. Zhang J., Qin S., Liu Y., Zuo X., Chen N., Rong, Y. Effect of Al replacing Si on mechanical properties of high carbon Q–P–T martensitic steels. Heat Treatment and Surface Engineering 2019, 1(1-2), 17-22.
- 13. Fedoseeva A., Nikitin I., Dudova N., Kaibyshev R. Effect of normalizing and tempering on structure and mechanical properties of advanced martensitic 10% Cr–3% Co–0.2% Re steel. In AIP Conference Proceedings 2017, 1909(1), 020049. AIP Publish.ing LLC, https://doi.org/10.1063/1.5013730.
- 14. Fedoseeva A., Nikitin I., Dudova N., Kaibyshev R. Short-term creep of advanced re-containing 10% Cr–3% Co–3% W martensitic steel at elevated temperature. In AIP Conference Proceedings 2018, 2051(1), 020083. AIP Publishing LLC.
- 15. Wang W., Liu S., Xu G., Zhang B., Huang Q. Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at 550 C. Nuclear Engineering and Technology 2016, 48(2), 518-524.
- 16. Wang W., Mao X., Liu S., Xu G., Wang B. Microstructure evolution and toughness degeneration of 9Cr martensitic steel after aging at 550° C for 20000 h. Journal of Materials Science 2018, 53(6), 4574-4581.
- 17. Xu Y., Nie Y., Wang M., Li W., Jin X. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging. Acta Materialia 2017, 131, 110-122.
- 18. Aydogan E., Anderoglu O., Maloy S.A., Livescu V., Gray III G.T., Perez-Bergquist S., Williams, D.J. Effect of shock loading on the microstructure, mechanical properties and grain boundary characteristics of HT-9 ferritic/martensitic steels. Materials Science and Engineering: A 2016, 651, 75-82.
- 19. Kim S.I., Seo S.J., Suh, I.S. Effect of Tempering on Bendability and Impact Property of Hot Rolled Low-Carbon Martensitic Steel. In Materials Science Forum 2018, 941, 474-479. Trans Tech Publications Ltd.
- 20. Xiao B., Xu L., Zhao L., Jing H., Han, Y. Tensile mechanical properties, constitutive equations, and fracture mechanisms of a novel 9% chromium tempered martensitic steel at elevated temperatures. Materials Science and Engineering: A 2017, 690, 104-119.
- 21. Fang J.X., Dong S.Y., Wang Y.J., Xu B.S., Zhang Z.H., Xia D., Ren W.B., He P. Microstructure and properties of an as-deposited and heat treated martensitic stainless steel fabricated by direct laser deposition. Journal of Manufacturing Processes 2017, 25, 402-410.
- 22. Li C., Deng X., Huang L., Jia Y., Wang Z. Effect of temperature on microstructure, properties and sliding wear behavior of low alloy wear-resistant martensitic steel. Wear 2020, 442, 203125, DOI:10.1016/j.wear.2019.203125.
- 23. Teagho F.T., Maziere M., Tankoua F., Galtier A., Gourgues-Lorenzon, A.F. The Effect of Microstructure Constituents on the Static and Dynamic Fracture Behavior of High Strength Quenched and Tempered Martensitic Steels. Procedia Structural Integrity 2018, 13, 763-768.
- 24. Guerra-Fuentes L., Hernandez-Rodriguez M.A.L., Zambrano-Robledo P., Salinas-Rodriguez A., Garcia-Sanchez E. Microstructure and Mechanical Properties of a Tempered High Cr Martensitic Steel. Journal of Materials Engineering and Performance 2017, 26(7), 3500-3506.
- 25. Yu L., Xiao X., Chen L., Cheng Y., Duan, H. A hierarchical theoretical model for mechanical properties of lath martensitic steels. International Journal of Plasticity 2018, 111, 135-151.
- 26. Lee C.H., Park J.Y., Seol W.K., Moon J., Lee T.H., Kang N.H., Kim, H.C. Microstructure and tensile and Charpy impact properties of reduced activation ferritic–martensitic steel with Ti. Fusion Engineering and Design 2017, 124, 953-957.
- 27. Stawicki T., Białobrzeska B., Kostencki, P. Tribological properties of plough shares made of pearlitic and martensitic steels. Metals 2017, 7(4), 139.
- 28. Krauss G. Tempering of lath martensite in low and medium carbon steels: assessment and challenges. Steel Research International 2017, 88(10), 1700038.
- 29. 29. Zhang K., Zhu M., Lan B., Liu P., Li W., Rong Y. The Mechanism of High-Strength Quenching-Partitioning-Tempering Martensitic Steel at Elevated Temperatures. Crystals 2019, 9(2), 94.
- 30. Yadav S.D., Sonderegger B., Stracey M., Poletti C. Modelling the creep behaviour of tempered martensitic steel based on a hybrid approach. Materials Science and Engineering: A 2016, 662, 330-341.
- 31. Parker J.D., Siefert J.A. The creep and fracture behaviour of tempered martensitic steels. Materials at High Temperatures 2018, 35(6), 491-503.
- 32. Malheiros L.C., Rodriguez E.P., Arlazarov A. Mechanical behavior of tempered martensite: Characterization and modeling. Materials Science and Engineering: A 2017, 706, 38-47.
- 33. Spätig P., Chen J.C., Odette G.R. Ferritic and Tempered Martensitic Steels. In: Structural Alloys for Nuclear Energy Applications, Elsevier 2019, 485-527.
- 34. Saha D.C., Biro E., Gerlich A.P., Zhou Y. Effects of tempering mode on the structural changes of martensite. Materials Science and Engineering: A 2016, 673, 467-475.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8759921-e665-49d0-999a-30a80177ec9f