Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A concept of a highly sensitive and fast-response airborne optoelectronic hygrometer, based on the absorption spectroscopy with laser light tuned to an intense ro-vibronic absorption line of H2O in the 1391–1393 nm range is presented. The target application of this study is airborne atmospheric measurements, in particular at the top of troposphere and in stratosphere. The cavity ring-down spectroscopy was used to achieve high sensitivity. In order to avoid interference of the results by water desorbed from the instrument walls, the open-path solution was applied. Tests of the instrument, performed in a climatic chamber, have shown some advantages of this concept over typical hygrometers designed for similar applications.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
793--805
Opis fizyczny
Bibliogr. 26 poz., rys., wykr., wzory
Twórcy
autor
- University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warsaw, Poland
autor
- University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warsaw, Poland
autor
- Humboldt-Universität zu Berlin, Department of Physics, Newtonstraße 15, 12489 Berlin, Germany
autor
- University of Warsaw, Faculty of Physics, 02-093 Warsaw, Pasteura 7, Poland
autor
- University of Warsaw, Interdisciplinary Centre for Mathematical and Computational Modelling, Pawinskiego 5a, 02-106 Warsaw, Poland
autor
- University of Warsaw, Faculty of Physics, 02-093 Warsaw, Pasteura 7, Poland
Bibliografia
- [1] Myhre, G., Shindell, D., Bréon, F.M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G.N., Takemura T., Zhang, H. (2013). Anthropogenic and Natural Radiative Forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
- [2] Dessler, A.E., Schoeber, M.R., Wang, T., Davis S.M., Rosenlof, K.H. (2013). Stratospheric water vapor feedback. PNAS, 110(45), 18087-18091.
- [3] Hegglin, M.I., Plummer, D.A., Shepherd, T.G., Scinocca, J.F., Anderson, J., Froidevaux, L., Funke, B., Hurst, D., Rozanov, A., Urban, J., von Clarmann, T., Walker, K.A., Wang, H.J., Tegtmeier S., Weigel, V. (2014). Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nature Geoscience, 7(3), 768-776.
- [4] Kärcher, B., Dörnbrack, A., Sölch, I. (2014). Supersaturation Variability and Cirrus Ice Crystal Size Distributions. J. Atmos. Sci., 71(3), 2905-2926.
- [5] Jensen, E.J., Diskin, G., Lawson, R.P., Lance, S., Bui, T.P., Hlavka, D., McGill, M., Pfister, L., Toon, O.B., Gaog, R. (2013). Ice nucleation and dehydration in the Tropical Tropopause Layer. PNAS, 110(6), 2041-2046.
- [6] Dyroff, C., Sanati, S., Christner, E., Zahn, A., Balzer, M., Bouquet, H., McManus, J.B., González-Ramos, Y., Schneider, M. (2015). Airborne in situ vertical profiling of HDO/H162O in the subtropical troposphere during the MUSICA remote sensing validation campaign. Atmos. Meas. Tech., 8(4),2037-2049.
- [7] Hurst, D.F., Read, W.G., Vömel, H., Selkirk, H.B., Rosenlof, K.H., Davis, S.M., Hall, E.G., Jordan, A.F., Oltmans, S.J. (2016). Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder. Atmos. Meas. Tech., 9(9), 4447-4457.
- [8] Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P.F., Birk, M, Bizzocchi, L., Boudon, V., Brown, L.R., Campargue, A., Chance, K., Cohen, E.A., Coudert, L.H., Devi, V.M.; Drouin, B.J., Fayt, A., Flaud, J.M., Gamache, R.R., Harrison, J.J., Hartmann, J.M., Hill, C., Hodges, J.T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R.J., Li, G., Long, D.A., Lyulin, O.M., Mackie, C.J., Massie, S.T., Mikhailenko, S., Müller, H.S.P., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E.R., Richard, C., Smith, M.A.H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G.C., Tyuterev, V.G., Wagner, G. (2013). The HITRAN 2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130(1), 4-50.
- [9] Bange, J., Esposito, M., Lenschow, D.H., Brown, P.R.A., Dreiling, V., Giez, A., Mahrt, L., Malinowski, S.P., Rodi, A.R., Shaw, R.A., Siebert, H., Smit, H., Zöger, M. (2013). Measurement of Aircraft State and Thermodynamic and Dynamic Variables, in Airborne Measurements for Environmental Research: Methods and Instruments (eds. Wendisch, M., Brenguier, J.L.), Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
- [10] Foken, T., Falke, H. (2012). Technical Note: Calibration device for the krypton hygrometer KH20. Atmos. Meas. Tech. , 5(3), 1861-1867.
- [11] Elliott, W.P., Gaffen, D.J. (1991). On the utility of radiosonde humidity archives for climate studies. Bull. Am. Meteorol. Soc., 72(10), 1507-1520.
- [12] Zondlo, M.A., Paige, M.E., Massick, S.M., Silver, J.A. (2010). Vertical cavity laser hygrometer for the National Science Foundation Gulfstream-V aircraft. J. Geophys. Res., 115, D20309.
- [13] Buchholz, B., Böse, N., Ebert, V. (2014). Absolute validation of a diode laser hygrometer via intercomparison with the German national primary water vapor standard. Appl. Phys. B., 116(3), 883-899.
- [14] Buchholz, B., Ebert, V. (2018). Absolute, pressure-dependent validation of a calibration-free, airborne laser hygrometer transfer standard (SEALDH-II) from 5 to 1200?ppmv using a metrological humidity generator. Atmos. Meas. Tech., 11(1), 459-471.
- [15] Sonnenfroh, D.M., Kessler, W.J., Magill, J.C., Upschulte, B.L., Allen, M.G., Barrick, J.D.W. (1998). In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer. Appl. Phys. B, 67, 275-282.
- [16] Nowak, J.L., Magryta, P., Stacewicz, T., Kumala, W., Malinowski, S.P. (2016). Fast optoelectronic sensor of H2O concentration. Optica Applicata, 46(3), 607-618.
- [17] Abe, H., Yamada, K.M.T. (2011). Performance evaluation of a trace-moisture analyzer based on cavity ring-down spectroscopy: Direct comparison with the NMIJ trace-moisture standard. Sensors and Actuators A: Physical, 165(2), 230-238.
- [18] O’Keefe, A., Deacon, D.A.G. (1988). Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources, Rev. Sci. Instrum., 59(12), 2544-2551.
- [19] Berden, G., Engel, R. (2010). Cavity Ring-Down Spectroscopy: Techniques and Applications. Wiley-Blackwell.
- [20] Herbelin, J.M., McKay, J.A., Kwok, M.A., Uenten, R.H., Urevig, D.S., Spencer, D.J., Benard, D.J. (1980). Sensitive measurement of photon lifetime and true reflectance in an optical cavity by a phase-shift method, Appl. Opt., 19, 144-147.
- [21] Lisak, D., Hodges, J.T., Ciuryło, R. (2006). Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy. Phys. Rev. A, 73(1), 012507-012513.
- [22] Hodges, J.T., Lisak, D., Lavrentieva, N., Bykov, A., Sinitsa, L., Tennyson, J., Barber, R.J., Tolchenov, R.N. (2008). Comparison between theoretical calculations and high-resolution measurements of pressure broadening for near-infrared water spectra. J. Mol. Spectrosc., 249(2), 86-94.
- [23] Sedlak, P., Sikula, J., Majzner, J., Vrnat, M., Fitl, P., Kopecky, D., Vyslouzil, F., Handel, P.H. (2012). Adsorption-desorption noise in QCM gas sensors. Sensors and Actuators B: Chemical, 166-177, 264-268.
- [24] Norment, H.G. (1988). Three-Dimensional Trajectory Analysis of Two Drop Sizing instruments: PMS OAP and PMS FSSP. NASA Contractor Report 4113, DOT/FAAjCT-87130, National Aeronautics and Space Administration, USA.
- [25] May, R.D. (1998). Open-path near-IR tunable diode laser spectrometer for atmospheric measurements of H2O. J. Geophys Res., 103(D15), 19161-19172.
- [26] Abe, H., Kitano, H. (2011). Improvement of flow and pressure controls in diffusion-tube humidity generator: Performance evaluation of trace-moisture generation using cavity ring-down spectroscopy. Sensors and Actuators A: Physical, 136(2), 723-729.
Uwagi
EN
1. This work was supported by Polish National Science Centre within the research project No. N N307 635440.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d87379aa-1eae-445d-a2ec-7d569b480c06