Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This investigation enumerates the treatment of phenol contaminated synthetic wastewater by Activated Waste Tea Leaves (AWTL). Phosphoric acid was used for the modification of waste tea leaves. The effects of initial pH, biosorbent dose, contact time, and initial phenol concentration were studied on the phenol uptake from the synthetic solution. Kinetic modelling was performed using pseudo 1st and 2nd order kinetics. The Langmuir and Freundlich’s Models were employed to interpret the AWTL behaviour at various mass transfer gradients. The results show that the optimum values for pH, biosorbent dose and contact time were 2.2 g/L and 180 minutes, respectively. Pseudo 2nd order kinetic and the Langmuir’s Models best described the kinetic and equilibrium behaviours, respectively.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--6
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
- Department of Chemical Engineering, University of Engineering & Technology, Lahore, Pakistan
autor
- Department of Chemical Engineering, University of Engineering & Technology, Lahore, Pakistan
autor
- Department of Chemical Engineering, University of Engineering & Technology, Lahore, Pakistan
autor
- Department of Chemical Engineering, University of Engineering & Technology, Lahore, Pakistan
autor
- Department of Chemical Engineering, University of Engineering & Technology, Lahore, Pakistan
Bibliografia
- 1. Aksu, Z. & Akpinar, D. (2001). Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge, Biochem. Eng. J. 7, 183-193. DOI: 10.1016/S1369-703X(00)00126-1.
- 2. Navarro, A.E., Portales, R.F., Sun-Kou, M.R. & Llanos, B.P. (2008). Effect of pH on phenol biosorption by marine seaweeds, J. Hazard. Mater. 156, 405-411. DOI: 10.1016/j. jhazmat.2007.12.039.
- 3. Kumar, N.S. & Min, K. (2011). Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modelling, Chem. Eng. J. 168, 562-571. DOI: 10.1016/j.cej.2011.01.023.
- 4. Aksu, Z. & Yener, J. (1998). Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge, Proces. Biochem. 33 (6), 649-655. DOI: 10.1016/ S0032-9592(98)00029-6.
- 5. Rao, J.R. & Viraraghavan, T. (2002). Biosorption of phenol from an aqueous solution by Aspergillus niger biomass, Bioresour. Technol. 85, 165-171. DOI: 10.1016/S0960-8524(02)00079-2.
- 6. Volesky, B. (2003). Sorption and Biosorption, Bv sorbex Inc., Montreal, 35-50.
- 7. Aksu, Z. & Akpınar, D. (2000). Modelling of simultaneous biosorption of phenol and nickel(II) onto dried aerobic activated sludge, Sep. Purif. Technol. 21, 87-99. DOI:10.1016/ S1383-5866(00)00194-5.
- 8. Auta, M. & Hameed, B.H. (2011). Preparation of waste tea activated carbon using potassium acetate as an activating 502-509. DOI: 10.1016/j.cej.2011.04.017.
- 9. Wu, J. & Yu, H.Q.(2006). Biosorption of phenol and chlorophenols from aqueous solutions by fungal mycelia, Proces. Biochem. 41, 44-49. DOI: 10.1016/j.procbio.2005.03.065.
- 10. Aksu, Z. & Yener, J. (2001). A comparative adsorption/ biosorption study of mono-chlorinated phenols onto various sorbents, Waste Manage. 21, 695-702. DOI: 10.1016/S0956- -053X(01)00006-X.
- 11. Giahi, M., Rakhshaee, R. & Bagherinia, M.A. (2011). Removal of methylene blue by tea wastages from the synthesis waste waters, Chinese Chem. Lett. 22, 225-228. DOI: 10.1016/j. cclet.2010.07.030.
- 12. Murugesan, G.S., Sathishkumar, M. & Swaminathan, K. (2006). Arsenic removal from groundwater by pretreated waste tea fungal biomass, Bioresour. Technol. 97, 483-487. DOI: 10.1016/j.biortech.2005.03.008.
- 13. Hameed, B.H. (2009). Spent tea leaves: A new non- -conventional and low-cost adsorbent for removal of basic dye from aqueous solutions, J. Hazard. Mater. 161, 753-759. DOI: 10.1016/j.jhazmat.2008.04.019.
- 14. Sanga, S., Lambertb, J.D., Hoc, C.T. & Yang, C.S. (2011). The chemistry and biotransformation of tea constituents, Pharmacol. Res. 64, 87- 99. DOI: 10.1016/j.phrs.2011.02.007.
- 15. Kazmi, M., Feroze, N., Naveed, S. & Javed, S.H. (2011). Biosorption of copper(II) on prunus amygdalus shell: Characterization, biosorption size analysis, kinetics, equilibrium and mechanistic studies. Korean J. Chem. Eng., 28 (10), 2033-2040. DOI: 10.1007/s11814-011-0072-y.
- 16. Feroze, N., Kazmi, M. & Ramzan, N. (2013). Dead immobilized Rhizopus Arrhizus as potential biosorbent for copper removal. Korean J. Chem. Eng., 30 (1), 95-100. DOI: 10.1007/s11814-012-0088-y.
- 17. Nie, S.P. & Xie, M.Y. (2011). A review on the isolation and structure of tea polysaccharides and their bioactivities, FoodHydrocolloid. 25, 144-149. DOI: 10.1016/j.foodhyd.2010.04.010.
- 18. Karak, T. & Bhagat, R.M. (2010). Trace elements in tea leaves, made tea and tea infusion: A review, Food Res. Int. 43, 2234-2252. DOI: 10.1016/j.foodres.2010.08.010.
- 19. Malkoc, E. & Nuhoglu, Y. (2006). Fixed bed studies for the sorption of chromium(VI) onto tea factory waste, Chem. Eng. Sci. 61, 4363-4372. DOI:10.1016/j.ces.2006.02.005.
- 20. Ho, Y.S. (2006). Review of second - order models for adsorption systems. J. Hazard. Mater., B136, 681-689. DOI: 10.1016/j.jhazmat.2005.12.043.
- 21. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 1361-1403. DOI: 10.1021/ja02242a004.
- 22. Freundlich, H. (1906). Über die adsorption in lösungen (Adsorption in solution), Z. Phys. Chem. 57, 384-470 [in German].
- 23. Dahlquist, E.W. (1978). The meaning of Scatchard and Hill plots, in: CHW Hirs, SN Timmaseff (Eds.), Methods of Enzymology, Academic press, New York, 270 - 299.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8712fda-fb5e-4fdb-8981-b3d578cd9442