PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The expected performance analysis of a retroreflector-supported inter-satellite laser rangefinder designed for Polish ImAging SaTellites (PIAST) space mission

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper provides a detailed treatment of the expected range performance for the laser rangefinder (LRF) developed for the Polish ImAging SaTellites (PIAST) space mission, where the distance between satellites within a constellation has to be measured during orbital flight. The satellites are equipped with corner cube retroreflectors (CCR) to increase the efficiency of laser back-reflection. A theoretical signal-to-noise range-dependence model was developed to determine the maximum expected range of the measurements. This model included the tilt-angle-dependent properties of the CCR far-field diffraction patterns (FFDP) which were measured experimentally. In addition, the specific parameters of the receiving optoelectronic circuit used were considered. The obtained results show that in the case of the constructed PIAST LRF (peak laser pulse power of 100 W, laser beam divergence of 5 mrad, receiving optical aperture diameter of 2 in, CCR diameter of 2 in), depending on the CCR angular inclination, a maximum measurement distance of 15-40 km is expected.
Rocznik
Strony
art. no. e150608
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., fot.
Twórcy
  • Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Laser Ranging Interferometer. GRACE-FO https://gracefo.jpl.nasa.gov/laser-ranging-interferometer/.
  • [2] Jang, Y. S. & Kim, S. W. Distance measurements using mode-locked lasers: A review. Nanomanufacturing Metrol. 1, 131-147 (2018). https://doi.org/10.1007/s41871-018-0017-8.
  • [3] Ke, J.-Y. et al. Long distance high resolution FMCW laser ranging with phase noise compensation and 2D signal processing. Appl. Opt. 61, 3443-3454 (2022). https://doi.org/10.1364/AO.454001.
  • [4] Bender, P. L. Laser measurements of the lunar distance. Rev. Geophys. 13, 271-272 (1975). https://doi.org/10.1029/RG013I003P00271.
  • [5] Bender, P. L. et al. The lunar laser ranging experiment. Science 182, 229-238 (1973). https://doi.org/10.1126/science.182.4109.229.
  • [6] Dickey, J. O. et al. Lunar laser ranging: A continuing legacy of the Apollo program. Science 265, 482-490 (1994). https://doi.org/10.1126/SCIENCE.265.5171.482.
  • [7] Schillak, S. et al. Analysis of the results of the Borowiec SLR station (7811) for the period 1993-2019 as an example of the quality assessment of satellite laser ranging stations. Sensors 22, 616 (2022). https://doi.org/10.3390/S22020616.
  • [8] Plotkin, H. H., Johnson, T. S., Spadin, P. & Move, J. Reflection of ruby laser radiation from explorer XXII. Proc. IEEE 53, 301-302 (1965). https://doi.org/10.1109/PROC.1965.3694.
  • [9] Degnan, J. J. A tutorial on retroreflectors and arrays used in satellite and lunar laser ranging. Photonics 10, 1215 (2023). https://doi.org/10.3390/photonics10111215.
  • [10] McGarry, J. F. et al. NASA’s satellite laser ranging systems for the twenty-first century. J. Geod. 93, 2249-2262 (2019). https://doi.org/10.1007/s00190-018-1191-6.
  • [11] Dell’Agnello, S. et al. Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS. Adv. Space Res. 47, 822-842 (2011). https://doi.org/10.1016/j.asr.2010.10.022.
  • [12] Liu, X. et al. Photon-limited single-pixel imaging. Opt. Express 28, 8132-8144 (2020). https://doi.org/10.1364/OE.381785.
  • [13] Williams, J. G., Turyshev, S. G., Boggs, D. H. & Ratcliff, J. T. Lunar laser ranging science: Gravitational physics and lunar interior and geodesy. Adv. Space Res. 37, 67-71 (2006). https://doi.org/10.1016/J.ASR.2005.05.013.
  • [14] Amann, M.-C., Bosch, T. M., Lescure, M., Myllylae, R. A. & Rioux, M. Laser ranging: a critical review of unusual techniques for distance measurement. Opt. Eng. 40, 10-19 (2001). https://doi.org/10.1117/1.1330700.
  • [15] Koenderink, J. J., van Ginneken, B. & Stavridi, M. Diffuse and specular reflectance from rough surfaces. Appl. Opt. 37, 130-139 (1998). https://doi.org/10.1364/AO.37.000130.
  • [16] Kruapech, S. & Widjaja, J. Laser range finder using Gaussian beam range equation. Opt. Laser Technol. 42, 749-754 (2010). https://doi.org/10.1016/J.OPTLASTEC.2009.11.020.
  • [17] Murphy, T. W. & Goodrow, S. D. Polarization and far-field diffraction patterns of total internal reflection corner cubes. Appl. Opt. 52, 117-126 (2013). https://doi.org/10.1364/AO.52.000117.
  • [18] Goodrow, S. D. & Murphy, T. W. Effects of thermal gradients on total internal reflection corner cubes. Appl. Opt. 51, 8793-8799 (2012). https://doi.org/10.1364/AO.51.008793.
  • [19] Azzam, R. M. A. & Liu, J. Polarization properties of corner-cube retroreflectors: theory and experiment. Appl. Opt. 36, 1553-1559 (1997). https://doi.org/10.1364/AO.36.001553.
  • [20] Kalibjian, R. Output polarization states of a corner cube reflector irradiated at non-normal incidence. Opt. Laser Technol. 39, 1485-1495 (2007). https://doi.org/10.1016/J.OPTLASTEC.2007.01.006.
  • [21] Villa, F., Severini, F., Madonini, F. & Zappa, F. SPADs and SiPMs arrays for long-range high-speed light detection and ranging (LiDAR). Sensors 21, 3839 (2021). https://doi.org/10.3390/s21113839.
  • [22] Wojtanowski, J. Cancelling lidar echo signal 1/range2 dependence and geometrical form factor shaping by the application of freeform optics. Opt. Laser Technol. 125, 106011 (2020). https://doi.org/10.1016/J.OPTLASTEC.2019.106011.
  • [23] Wojtanowski, J., Zygmunt, M., Traczyk, M., Mierczyk, Z. & Jakubaszek, M. Beam forming optic aberrations’ impact on maximum range of semiconductor laser based rangefinders. Opto-Electron. Rev. 22, 152-161 (2014). https://doi.org/10.2478/s11772-014-0191-1.
  • [24] Mahmood, A. S. An approach to investigating the feasibility of free-space optical communication technology deployment under scintillation effects. Opto-Electron. Rev. 31, e147037 (2023). https://doi.org/10.24425/OPELRE.2023.147037.
  • [25] Hecht, E. Diffraction. in Optics 467-471 (Addison Wesley, San Francisco, 2002).
  • [26] Goodman, J. W. Wave-Optics Analysis of Coherent Optical Systems. in Introduction to Fourier Optics 96-108 (McGraw-Hill, Boston, 1996).
Uwagi
1. This work was supported by Polish Centre for Research and Development (NCBiR) under PIAST (Polish ImAging SaTellites) project. Grant no. DOB SZAFIR/10/A/022/01/2021.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d871024a-22f0-4c86-a9ab-45a456fa605a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.