PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Stability investigation of the pcm nanocomposites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ensuring the stability is a key issue to be solved for the technical application of nanocomposites. In this work, fatty acid P1801 served as base phase change material (PCM)P1801, and its main ingredients are palmitic acid (58%) and stearic acid (38%). Titania (TiO2) and alumina (Al2O3) with mass concentrations of 1% and 5% were selected as nanoparticles, while polyvinylpyrrolidone (PVP) or oleic acid (OA) with mass concentrations of 5% were tested as surfactants. On the basis of the measured temperature distributions in the sample, which is subject to melting and solidification processes, it was determined which of the tested nanocomposites are stable and which are not. In addition, a thermal test was proposed to assess the stability of the produced nanoPCM, which consists in measuring the temperature distribution versus time according to a precisely given procedure.
Słowa kluczowe
Rocznik
Strony
381--389
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Haghighi EB, Nikkam N, Saleemi M, Behi M, Mirmohammadi MA, Poth H, et al. Shelf stability of nanofluids and its effect on thermal conduc-tivity and viscosity. Measurement Science and Technology. 2013;24;105301.
  • 2. Lotfizadeh Dehkordi B., Ghadimi A., Metselaar H.S.C. Box–Behnken experimental design for investigation of stability and thermal conduc-tivity of TiO2 nanofluids. Journal of Nanoparticle Research. 2013;15:1369.
  • 3. Witharana S., Palabiyik I., Musina Z., Ding Y. Stability of glycol nanofluids — The theory and experiment. Powder Technology. 2013;239:72–77.
  • 4. Ilyas S.U., Pendyala R., Marneni N. Stability and Agglomeration of Alumina Nanoparticles in Ethanol-Water Mixtures. Procedia Engi-neering. 2016;148:290–297.
  • 5. Fuskele V., Sarviya R.M. Recent developments in Nanoparticles Synthesis. Preparation and Stability of Nanofluids. Materials Today: Proceedings. 2017;4:4049–4060.
  • 6. Yu F, Chen Y, Liang X, Xu J, Lee C, Liang Q, et al. Dispersion stability of thermal nanofluids. Progress in Natural Science: Materials International. 2017;27:531-542.
  • 7. Abdullah M, Malik SA, Iqbal MH, Sajid MM, Shad NA, Hussain SZ, et al. Sedimentation and stabilization of nano-fluids with dispersant. Colloids and Surfaces. 2018;554;86–92.
  • 8. Mahbubul IM, Elcioglu EB, Amalina MA, Saidur R. Stability, thermo-physical properties and performance assessment of alumina–water nanofluid with emphasis on ultrasonication and storage period. Powder Technology. 2019;345:668–675.
  • 9. Lee L, Han K, Koo J. A novel method to evaluate dispersion stability of nanofluids. International Journal of Heat and Mass Transfer. 2014;70;421–429.
  • 10. Lemes MA, Rabelo D, de Oliveira AE. A novel method to evaluate nanofluid stability using multivariate image analysis. Analytical Methods. 2017;9;5826.
  • 11. Ilyas SU, Pendyala R, Marneni N. Stability of nanofluids. Topics in Mining, Metallurgy and Materials Engineering. Eds. Korada VS, Hamid NHB. Engineering applications of nanotechnology. From energy to drug delivery. Springer;2017. Avaiable from: https://www.springerprofessional.de/engineering-applications-of-nanotechnology/11992454
  • 12. Wu S, Zhu D, Zhang X, Huang J. Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM). Energy Fuels. 2010; 24(3):1894–1898.
  • 13. Choi DH, Lee J, Hong H, Kang Y T. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. International Journal of Refrigeration. 2014;42:112-120.
  • 14. Jin Y, Wan Q, Ding Y. PCMs Heat Transfer Performance Enhance-ment with Expanded Graphite and its Thermal Stability. Procedia Eng. 2015;102:1877-1884
  • 15. Zhichao L, Qiang Z, Gaohui W. Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material. International Journal of Heat and Mass Transfer. 2015;80;653–659.
  • 16. Nourani M, Hamdami N, Keramat J, Moheb A, Shahedi M. Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity. Renewable Energy. 2016;88:474-482.
  • 17. Liu Y, Yang Y. Use of nano-α-Al2O3 to improve binary eutectic hy-drated salt as phase change material. Solar Energy Materials & Solar Cells. 2017;160;18–25.
  • 18. Singh DK, Suresh S, Singh H, Rose BAJ, Tassou S, Anantharaman N. Myo-inositol based nano-PCM for solar thermal energy storage. Applied Thermal Engineering. 2017;110;564–572.
  • 19. Zhang JL, Wu N, Wu XW, Chen Y, Zhao Y, Liang JF, et al. High latent heat stearic acid impregnated in expanded graphite. Thermo-chimica Acta. 2018;663;118–124.
  • 20. Nourani M, Hamdami N, Keramat J. Preparation and evaluation of a stable nanoalumina-paraffin composite: Melting rate investigation using image analysis. Journal of Dispersion Science and Technology. 2018;39(10);1385-1393.
  • 21. Prabhu B, ValanArasu A. Stability analysis of TiO2–Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems. Renewable Energy. 2020;152;358-367.
  • 22. Ibrahim SI, Ali AA., Hafidh SA, Chaichan MT, Kazem HA, Ali JM, Isahak WNR, Alamiery A. Stability and thermal conductivity of different nano-composite material prepared for thermal energy storage appli-cations. South African Journal of Chemical Engineering. 2022;39;72-89.
  • 23. Zhang G, Guo Y, Zhang B, Yan X, Lu W, Cui G, Du Y. Preparation and control mechanism of nano-phase change emulsion with high thermal conductivity and low supercooling for thermal energy storage. Energy Reports. 2022;8;8301-8311.
  • 24. Venkateshwar K, Joshy N, Simha H, Mahmud S. Quantifying the nanoparticles concentration in nano-PCM. Journal of Nanoparticle Research. 2019;21;260.
  • 25. Saydam V, Duan X. Dispersing Different Nanoparticles in Paraffin Wax as Enhanced Phase Change Materials – A Study on the Stability Issue. Journal of Thermal Analysis and Calorimetry. 2018;135(1):
  • 26. Lee W, Yeop J, Heo J, Yoon YJ, Park SY, Jeong J, et al. High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports. 2020;10:18055.
  • 27. Rajendran D, Ramalingame R, Adiraju A, Nouri H, Kanoun O. Role of Solvent Polarity on Dispersion Quality and Stability of Functionalized Carbon Nanotubes. Journal of Composites Science. 2022;6(1):26
  • 28. Saroha J, Mehra S, Kumar M, Sharma SN. Thermo-physical proper-ties of paraffin/TiO2 and sorbitol/TiO2 nanocomposites for enhanced phase change materials: a study on the stability issue. Applied Phys-ics A. 2021;127:916.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d86f539b-7cdb-4a9a-936d-a3eafa568637
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.