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The aim of this paper is a presentation of problems that might arise during 
determination of the bubble size spectrum in the sea using an inverse acoustics method. The 
mathematical model is introduced and limits of its numerical solution are discussed. 
Theoretical considerations lead to ill-posed system of integral equations and the system of 
linear equations resulting from a discretization process is solved using the Tikhonov 
regularization method. A mathematical model is tested for a power-law bubble size 
distribution. Some examples of theoretical studies related to this problem are provided. 
Practical applications of the bubble population determination algorithm on the basis of 
collected in situ empirical data concerning sound speed and attenuation are given.  

 
 

INTRODUCTION 

Gas bubbles in the ocean are generated by breaking waves, biological activity, ships and 
other various mechanisms. Both single bubbles and bubble clouds in the water body could be 
observed and counted with acoustic methods. Knowledge of the bubble size spectrum is very 
important in oceanography. Existence of bubbles in water plays an important role in the 
processes of generation, absorption and scattering of underwater sound. Moreover, moving 
bubbles constitute efficient source of the ambient noise in the ocean. In fact, diverse factors 
such as the wind speed, water temperature, depth and others have influence on the bubble 
concentrations and size distribution.  

Different techniques are employed for bubbles sizing. For some classes of 
measurements inverse methods or iterative inverse bubble sizing techniques are required. 
Subsequently, it is possible to find the bubble density spectrum functions. It is also important 
to remember that these methods have many limitations. For example, they are not suitable in 
the case of high value of the gas void fraction. Simultaneously with experiments, theoretical 
and numerical studies are conducted. During theoretical investigations many authors use 
simple bubble distributions such as single-size, Gaussian or power-law functions.  
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Knowledge of the bubble size spectrum allows calculating the sound speed and 
attenuation in bubbly water. In this paper inverse problem is considered. We assume that the 
sound speed and attenuation are measured and the bubble size spectrum can be determined on 
the basis of these parameters. The paper presents theoretical considerations of the bubble size 
spectrum calculations and gives some information about methods of the sound speed and 
attenuation measurements. 

 
1. GOVERNING EQUATIONS 

We consider a bubbly liquid with bubbles of radii from La  to Ua  meters. The square of 

the complex wave number κ  we write using the Commander and Prosperetti formula [2]:  
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where 0/ ck ω=  is the acoustic wave number, fπω 2= is the angular frequency and 0c  is 

sound speed in pure liquid, tδ  is the damping coefficient, 0ω  is the resonance angular 

frequency of a bubble, ( )an  is the number of bubbles per unit volume with radii a  in 

1=da µm range. 
The resonance angular frequency 0ω  of a bubble with radius a  can be determined using 

the formula [1]:  
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where )( 2aDz ω= and D  is the gas thermal diffusivity, 0ρ  is the density in pure liquid. The 

quantity 0p  is the undisturbed pressure in the bubble and is given by aPp /200 σ+= , where 

0P  denotes the equilibrium pressure in the liquid. The damping coefficient tδ  is the sum of 

the viscous damping constant, the damping constant due to thermal effects and the acoustic 
radiation damping constant: 
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where µ  is the coefficient of molecular viscosity of seawater. 

Setting 
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and separating the real and imaginary parts in Eq. (1) after some calculations we obtain two 
new equations [3, 5]:  
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Finally we obtain the Fredholm integral equations of the first kind: 
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Figure 1 shows the kernel functions 1K  and 2K  as a function of the bubble radius for 

different frequencies. Function 1K  is positive for radii less than the resonant radius, zero at 

this radius and negative for larger radii. Function 2K  is peaked at resonant radius and positive 
for all radii. 
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Fig.1. The kernel functions 1K  and 2K  versus the bubble radius for different frequencies. 

 
The quantity u  and v  we can compute by measuring the phase velocity C  in m/s and 

the attenuation α  in dB/m. The relationship between these values is follows: 
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To verify the proposed numerical model the sound speed and attenuation were 

calculated using Eq. (1). Numerical investigations were carried out for the bubble population 
density 3

0)( −= anan where 0n  is constant calculated using assumed value of the volume 

fraction β  given by 
 

∫=
U

L

a

a

daana )(
3

4 3πβ . (10) 

Volume 17 HYDROACOUSTICS

9



2. INVERSE PROBLEM 

To solve numerically Eq. (8) we divide the interval ],[ UL aa  intoM subdomains and 

write this equation in the form  
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Two different methods of discretization of Eq. (11) are used. First of them depends on 

linear interpolation of the unknown function n  inside each interval ],[ 1+jj aa  in the following 

way [3]: 
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where 1,...,2,1),( +== MjanN jj . Substituting above functions into Eq. (11) we obtain:  
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Another approximation of Eq. (11) proposed by the author has the form: 
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If we know the values of function g  for frequencies Nii ,...,2,1, =ω , we can write N  

linear equations and, in consequence, the system of linear equations 
 
 KN=g. (15) 
 
The integrals in matrix K must be calculated numerically and the values of vector g are 
calculated using measured values of phase speed and attenuation. 

The kernel function K  in Eq. (8) is analytic and compact and in consequence of this 
fact the equation is ill-posed. To solve system (15) the Tikhonov regularization is used: 
 
 (KTK+εI)N=KTg (16) 
 
where KT is the transpose of matrix K, I is the identity matrix and ε  is a regularization 
parameter . 
 

3. RESULTS OF NUMERICAL INVESTIGATIONS 

Numerical calculations were carried out for different values of frequencies and the 
bubble radius range. Firstly, we assumed that the bubble radii were from 20 µm to 320 µm 
and frequencies change from 5 kHz to 155 kHz. The values of the regularization parameter 
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we experimented with ranged from 3510−  to 2010− . Figure 2 presents inverse problem solution 
obtained for two different values of this parameter. The dashed line represents the exact 
solution and the solid line depicts numerically obtained bubble density distribution. An exact 
analysis shows that in this situation it is impossible to obtain solution with the relative error 
less than 10% for all investigated bubble radii. However, it is possible to obtain such a 
solution in subintervals [20 µm, 150 µm] or [150 µm, 320 µm] correspondingly. 
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Fig.2. Inverse problem solution for different values of the regularization parameter: bubble radius 
from 20 µm to 320 µm and frequency from 5 kHz to 155 kHz. 

 
Other results we obtain when frequency changes from 2 kHz to 22 kHz and the bubble 

radius interval is the same as in the previous case. Figure 3 shows inverse problem solutions 
for this situation and different values of ε  parameter. Now it is possible to obtain the results 
with the relative error less than 10% only for bubble radii from 120 µm to 250 µm. 
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Fig.3. Inverse problem solution for different values of the regularization parameter: bubble radius 
from 20 µm to 320 µm and frequency from 2 kHz to 22 kHz. 

 
The next figure shows results obtained for the same values of frequencies i.e. from 2 

kHz to 22 kHz as earlier and for the bubbles from 160 µm to 300 µm. In this situation, we 
found solution where the relative error is less than 10% for all bubbles. 

Volume 17 HYDROACOUSTICS

11



200 250 300
10

7

10
8

10
9

Bubble radius [µm]

|n
(a

)|
 [m

-4
]

 

 

Exact
Model

 
 

Fig.4. Inverse problem solution for different values of the regularization parameter: bubble radius 
from 160 µm to 300 µm and frequency from 2 kHz to 22 kHz. 

 
An exact analysis shows that it is impossible to choose correct value of the 

regularization parameter before starting numerical calculations. To analyze this problem more 
carefully we collected the results of numerical calculations obtained for different values of 
this parameter. Figure 5 depicts the results of numerical calculations (marked by stars) for 
frequencies changing from 2 kHz to 22 kHz and different intervals of bubble radius. We took 
the values of the regularization parameter varying from 3510−  to 2010− . The left figure presents 
that case for bubbles from 20 µm to 320 µm, however we cannot obtain correct solution for 
bubble radii smaller than 50 µm. When the bubble radius changes from 160 µm to 300 µm 
(the right figure) then the solution of the inverse problem is different. This time we obtain 
different solutions for different values of parameter ε  and it is possible to choose such a 
value of this parameter that the solution is exact for all radii. 
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Fig.5. Inverse problem solution for different values of the regularization parameter: bubble 
radius from 20 µm to 320 µm (left) and from 160 µm to 300 µm (right). 

 
As it is obviously observed in Fig. 5, an ill-posed problem may have more than one 

solution or do not have any solution. But this property is not the only one difficulty which 
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characterizes such problems. In addition to this the solution may not depend continuously on 
the initial data. Figure 6 describes solution of the third example (Fig. 4) when randomly 
selected data errors of function g were less than 10% in each point. 
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Fig.6. Inverse problem solution with randomly selected data errors. 
 

All the results of numerical calculations presented in this paper we carried out using Eq. 
(13). Usually we obtain better accuracy using this model but it is not a rule. It is worth 
noticing that the second model (Eq. (14)) has important advantages. Because there is not any 
numerical integration during calculations, it is easier to write a computer program for this 
model and it works faster. The inverse problem requires many different calculations therefore 
the second model can be more useful especially during initial numerical tests. 
 

4. SOUND SPEED AND ATTENUATION DETERMINATION 

During numerical tests we have chosen the frequencies, the bubble radii and 
additionally we have assumed that the bubble size spectrum is known. On the basis of these 
data the matrix K and vector g were calculated. In practice, the matrix K is determined in the 
same way but vector g is work out using sound speed and attenuation obtained from 
experimental data. 

The input data to the presented above theoretical mode, the method of the measurements 
of the phase sound speed and attenuation proposed by Terrill and Melville [4] was tested in 
experiments carried out at sea. In the experiments, a broadband pulses in the form of chirps 
with linear or with quadratic instantaneous frequency deviation were transmitted. The 
frequencies of transmitted signals were from 2 kHz to 20 or up to 25 kHz, the pulses duration 
was 10 or 15 ms. Signal was transmitted by the Soviet hydrophone G005 (with removed 
preamplifier), and as receiver the calibrated hydrophone Brüel&Kjær Type 8105 was 
employed. Signals were designed and formed with the A/D card NI 6351. As the signal power 
amplifier, driving the transmitter, the power amplifier L-2 Instruments Inc was employed. 
Synchronously, the same card was used as the signal sampler at the rate 120/130 kS/sec, with 
the resolution 16 bit. The A/D card control, signal design, reception and pre-processing were 
carried out in MATLAB environment. Signals were send in 100 ping series with repetition 
time between transmission 30 ms. However, the ping rate is limited by the communication 
speed between A/D card and the computer, and some ping records were missing. The distance 
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between transmitter and hydrophone was L=0.4 m, and the distance from the ship board 
greater than 3 m. Records were performed at the depth of 1 m. During measurements the sea 
state was 3B.  

The frequency response of the Brüel&Kjær Type 8105 hydrophone is practically flat in 
the utilised frequency range. The transmit voltage response curve of the spherical of 
cylindrical transmitters are strongly dependent on frequency, with typical 6 – 7 dB/octave 
increasing with frequency, up to its resonance frequency (in original paper by Terrill and 
Melville, the frequency transmit voltage response of their transmitter was given incorrectly). 
Therefore, corresponding amplitude correction of the sending signals was applied. To test 
quality of received signals in the lower frequency range the nonlinear, up going quadratic 
frequency modulation was used.  

The phase correction for both the transmitter, and receiver were not taken into account, 
in the post processing, as the less relevant in comparison with the effects of the signal 
distortions during propagation through bubble water. 

The examples of the form of received chirp signals and their envelopes propagated 
through bubbly (upper panel) and bubble-free water are presented in Fig. 7. 
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Fig.7. Examples of the forms of a received chirp signal in the case of disturbed (upper panel) 
and bubble-free water. 

 
Envelopes of 100 pings, of received signal during sounding with the LFM signals where 

the vertical axis (the time) is proportional to instantaneous frequency between 2 and 20 kHz 
are presented in Fig. 8. In the image, a segment with higher signal attenuations is clearly 
visible between the 10th and 20th pings. The fluctuations of phase speed in all set of pings are 
also noticeable in the form resembles of a moiré pattern. 

In the course of post processing the received signals were filtered in 20 equidistant 
frequency bands between 2 kHz and 20 kHz with the FFT inverse transform. The inverse FFT 
procedure is actually a two-step operation that applies a filter in the FFT domain with 
convolution with rectangular window and inverts the FFT image back to the original data 
space. Maxima of filtered time series were found and times of flight in each frequency band in 
relation to the time of the signal transmission in the same frequency range were computed.  

Figure 9 presents time series of samples number for found maxima in the selected 
narrow frequency bands. Black curve represent maxima in filtered received signals, red line 
below samples of local maxima of signal at the output of A/D card. The phase sound speed in 
given frequency band )( fc  is estimated according to formula:  
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Fig.8. Signal envelopes of series 100 pings. 
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Fig.9. Time series of sample number of maxima in selected frequency bands. 
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Fig.10. Phase sound speed and attenuation fluctuations at different frequencies during breaking event. 
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where receivern  is sample number of maximum in given frequency band in received signal, and 

DAn /  is sample number of maximum in given frequency band at A/D output. 

Figure 10 shows the phase sound speed fluctuations and sound attenuation in frequency 
bands in the 100 consecutive pings. 
 

5. CONCLUSIONS 

The problem of the bubble sizes spectrum determination was considered. This problem 
was theoretically solved using methods suitable for inverse problems. Two different methods 
of discretization of the obtained Fredholm integral equation are presented. Usually we obtain 
better accuracy using the first of them but it is not a rule. The second discretization method 
has one important advantage. Using it there is no need for integration during calculations. It is 
worth to write here that we derived the Fredholm equation with two different kernels but 
during calculations only the second equation, i.e. Eq. (7) is generally used. To solve the 
obtained ill-posed problem the Tikhonov regularization was proposed. Calculations were 
carried out using own computer programs in MATLAB. The procedures were tested on 
analytical data assuming power-law bubble size distribution. Numerical investigation shows 
that it is impossible to choose value of the regularization parameter before starting numerical 
calculations. Moreover most often we find correct solution only in subintervals of bubble 
radii. 

As an input data to the presented algorithm directly measured the sound speed and 
attenuation over a relative broad range of frequencies were tested. The possibility to measure 
at the same time both the real and imaginary parts of the complex dispersion relationship with 
simple setup looked at the beginning steps as very promising. However, numerical problems 
that arise due to specific properties of the theoretical model need more careful examinations. 
Another problem is the frequency dependence of transmitting voltage response of ceramic 
transducers, which requires a construction of special design of sounding signals and/or 
specialised power amplifiers.  
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