PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of through transmission laser welding of Nylon6 by finite element simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the years laser welding has evolved as a fabrication process capable of overcoming the limitations of conventional joining methodologies. It facilitates the welding of diverse range of materials like metals, non-metals, polymers etc. Laser transmission welding is a technique employed for fabricating intricate shapes/contours in polymers with better precision compared to the other conventional processes. Nylon6, a synthetic semi-crystalline polymer is utilized as an engineering thermoplastic due to its high strength and temperature resistant properties. In the earlier researches, various welding techniques were employed for the fabrication of polymers and metals keeping the laser beam stagnant, and much emphasis was given only to temperature distribution along the different axes and limited attention was given to residual stress analysis. Therefore, in this research work, a three-dimensional time-dependent model using a moving laser beam is used to fabricate unreinforced Nylon6 specimens.
Twórcy
autor
  • Jadavpur University, Kolkata, India
autor
  • Jadavpur University, Mechanical Engineering Department
Bibliografia
  • [1] Coelho J., Abreu M., Pires M., High-speed laser welding of plastic films, Optics and Lasers in Engineering, 34, 385–395, 2000.
  • [2] Kurosaki Y., Radiative heat transfer in plastic welding process, Journal of Quantitative Spectroscopy and Radiative Transfer, 93, 25–41, 2005/06/15, 2005.
  • [3] Ilie M., Kneip J.-C., Matteï S., Nichici A., Roze C., Girasole T., Through-transmission laser welding of polymers–temperature field modeling and infrared investigation, Infrared Physics & Technology, 51, 73–79, 2007.
  • [4] Casalino G., Ghorbel E., Numerical model of CO 2 laser welding of thermoplastic polymers, Journal of Materials Processing Technology, 207, 63–71, 2008.
  • [5] Coelho J.M., Abreu M.A., Rodrigues F.C., Modelling the spot shape influence on high-speed transmission lap welding of thermoplastics films, Optics and Lasers in Engineering, 46, 55–61, 2008.
  • [6] Amanat N., Chaminade C., Grace J., McKenzie D.R., James N.L., Transmission laser welding of amorphous and semi-crystalline poly-ether–ether– ketone for applications in the medical device industry, Materials & Design, 31, 4823–4830, 2010.
  • [7] Kurosaki Y., Satoh K., A fiber laser welding of plastics assisted by transparent solid heat sink to prevent the surface thermal damages, Physics Procedia, 5, 173–181, 2010.
  • [8] Zak G., Mayboudi L., Chen M., Bates P.J., Birk M., Weld line transverse energy density distribution measurement in laser transmission welding of thermoplastics, Journal of Materials Processing Technology, 210, 24–31, 2010.
  • [9] Acherjee B., Mondal S., Tudu B., Misra D., Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics, Applied Soft Computing, 11, 2548–2555, 2011.
  • [10] Tu J., Paleocrassas A., Fatigue crack fusion in thinsheet aluminum alloys AA7075-T6 using low-speed fiber laser welding, Journal of Materials Processing Technology, 211, 95–102, 2011.
  • [11] Cho W.-I., Na S.-J., Thomy C., Vollertsen F., Numerical simulation of molten pool dynamics in high power disk laser welding, Journal of Materials Processing Technology, 212, 262–275, 2012.
  • [12] Devrient M., Da X., Frick T., Schmidt M., Experimental and simulative investigation of laser transmission welding under consideration of scattering, Physics Procedia, 39, 117–127, 2012.
  • [13] Han Q., Kim D., Kim D., LeeH., Kim N., Laser pulsed welding in thin sheets of Zircaloy-4, Journal of Materials Processing Technology, 212, 1116–1122, 2012.
  • [14] Wippo V., Devrient M., Kern M., Jaeschke P., Frick T., Stute U., Schmidt M., Haferkamp H., Evaluation of a pyrometric-based temperature measuring process for the laser transmission welding, Physics Procedia, 39, 128–136, 2012.
  • [15] Li C., Wang Y., Three-dimensional finite element analysis of temperature and stress distributions for in-service welding process, Materials & Design, 52, 1052–1057, 2013.
  • [16] Devrient M., Kern M., Jaeschke P., Stute U., Haferkamp H., Schmidt M., Experimental investigation of laser transmission welding of thermoplastics with part-adapted temperature fields, Physics Procedia, 41, 59–69, 2013.
  • [17] Mamuschkin V., Roesner A., Aden M., Laser transmission welding of white thermoplastics with adapted wavelengths, Physics Procedia, 41, 172–179, 2013.
  • [18] Reinl S., Diode lasers used in plastic welding and selective laser soldering – applications and products, Physics Procedia, 41, 234–240, 2013.
  • [19] Arif N., Chung H., Alternating current-gas metal arc welding for application to thin sheets, Journal of Materials Processing Technology, 214, 1828–1837, 2014.
  • [20] Cho D.-W., Cho W.-I., Na S.-J., Modeling and simulation of arc: laser and hybrid welding process, Journal of Manufacturing Processes, 16, 26–55, 2014.
  • [21] Liu F., Liao J., Nakata K., Joining of metal to plastic using friction lap welding, Materials & Design (1980–2015), 54, 236–244, 2014.
  • [22] Wang X., Chen H., Liu H., Investigation of the relationships of process parameters, molten pool geometry and shear strength in laser transmission welding of polyethylene terephthalate and polypropylene, Materials & Design, 55, 343–352, 2014.
  • [23] Metais A., Mattei S., Tomashchuk I., Gaied S., Modelling of Transport Phenomena in Laser Welding of Steels, Proceedings of the COMSOL Conference, pp. 1–7, 2015
  • [24] Tomashchuk I., Bendaoud I., Sallamand P., Cicala E., Lafaye S., Almuneau M., Multiphysical modelling of keyhole formation during dissimilar laser welding, Proceedings of the COMSOL Conference, pp. 1–7, 2016.
  • [25] Pagano N., Campana G., Fiorina M., Morelli R., Laser transmission welding of polylactide to aluminium thin films for applications in the foodpackaging industry, Optics & Laser Technology, 91, 80–84, 2017.
  • [26] Millot C., Multi-scale characterization of deformation mechanisms of bulk polyamide 6 under tensile stretching below and above the glass transition, Doctor of Philosophy’s Thesis, National Institute of Applied Sciences of Lyon, https://tel.archives-ouvertes.fr/tel-01207840/ (accessed 29th May 2018).
  • [27] Kanigalpula P.-K.-C., Jaypuria S., Pratihar D.-K., Jha M.-N., Experimental investigations, inputoutput modeling, and optimization of spiking phenomenon in electron beam welding of ETP copper plates, Measurement, 129, 302–318, 2018.
  • [28] Jina R., Chen Q., Soboyejo A.-B.-O., Non-linear and mixed regression models in predicting sustainable concrete strength, Construction and Building Materials, 170, 142–152, 2018.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d866a88b-4e85-430c-8ed1-3bf8312b3ff4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.