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INTRINSIC DIMENSIONALITY DETECTION
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Abstract In this work, we revisit the Locally Linear Embedding (LLE) algorithm that

is widely employed in dimensionality reduction. With a particular interest to

the correspondences of the nearest neighbors in the original and embedded

spaces, we observe that, when prescribing low-dimensional embedding spaces,

LLE remains merely a weight-preserving rather than a neighborhood-preserving

algorithm. Thus, we propose a “neighborhood-preserving ratio” criterion to es-

timate the minimal intrinsic dimensionality required for neighborhood preser-

vation. We validate its efficiency on sets of synthetic data, including S-curve,

Swiss roll, and a dataset of grayscale images.
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1. Introduction

Handling high-dimensional data is inconvenient due to the exponential increase of

its computational complexity and prohibitive storage. However, real-life data does

not necessarily fill high-dimensional space RD uniformly. Instead, it is observed to

concentrate on underlying manifold M of a much lower dimensionality, M ∈ Rd,

d � D. Thus, dimensionality reduction is one of the challenges usually encountered

in statistical pattern recognition, information processing, and scientific computing.

For decades, a large number of algorithms were proposed to seek the most com-

pact embeddings of original data in lower-dimensional spaces. Locally Linear Em-

bedding [5], among others, is an unsupervised eigenvector method that discovers the

underlying non-linear structures of the original data. Unlike Metric Multidimensio-

nal Scaling (MDS) [2] and Principal Component Analysis (PCA) [3] (which are both

linear algorithms), LLE is widely employed, owing not only to its simplicity of imple-

mentation but also its capacity of generating highly nonlinear embeddings.

Despite its popularity in dimensionality reduction, LLE does not provide an es-

timation of the intrinsic dimensionality, din; i.e., the minimal value of d required to

represent the data in the target feature space without information loss. The usual

criteria based on eigenvalues of cost matrix [4] were found unreliable and worked only

for contrived examples where the data lies either essentially on a linear manifold or

is sampled basically in a uniform way [6]. In most cases, the spectrum of the cost

matrix does not feature a ”telltale gap” allowing us to detect the intrinsic dimen-

sion. Therefore, d has to be provided by the user as an input parameter to the LLE

algorithm [7].

In this work, we observe that the LLE algorithm relies on the assumption that

the k nearest neighbors in the original space remain closest in the feature space.

However, as LLE is based solely on preserving weights, this assumption does not

necessarily hold. With this in mind, we search for a drastic change in the set of

closest neighbors when imposed dimensionality d increases rather than looking for

a “telltale gap” in the spectrum of the eigenvalues. From a quantitative point of

view, we define the neighborhood-preserving ratio as the percentage of the original

nearest neighbors within the k nearest neighbors in the embedded space. Finally, we

propose this criterion to infer the intrinsic dimensionality.

The remainder of the paper is organized in the following manner: the LLE met-

hod is briefly recalled in Section 2, followed by observations on the algorithm and

the proposition of the intrinsic dimensionality estimation criterion in Section 3. In

Section 4, several benchmark cases with synthetic data validate the proposed crite-

rion. Finally, we close the paper with concluding comments and suggestions for future

work in Section 5.



Intrinsic dimensionality detection criterion based on Locally Linear Embedding 347

2. Locally linear embedding

Like many other algorithms, LLE discovers the non-linear structure of high-

dimensional data by exploiting the local symmetries of linear reconstruction. In this

section, we shall briefly recall the principle idea of LLE. It is noticed that, unless

otherwise specified, the original high-dimensional data is denoted by matrix X, and

the embedded Y. Two common steps covered in LLE include the following:

1. learn the local geometry around each point,

2. embed high-dimensional data into low-dimensional feature space using local in-

formation learned from 1.

In the first step, the intrinsic geometric properties of high-dimensional data are cha-

racterized by weight matrix W, where each row W(i) minimizes the reconstruction

error of point X(i) by its neighbors.

W(i) = Argmin
ωij

|X(i) −
∑
j

ωijX
(j)|

2
, (1)

where ωij = 0 if point X(j) is not one of the k nearest neighbors of point X(i).

Note that this weigh matrix is not necessarily symmetrical for two reasons: on the

one hand, if X(i) is one of the nearest neighbors of X(j), this does not guarantee

that X(j) also lies in the k-neighborhood of X(i), and on the other hand, even X(i)

and X(j) are mutually nearest neighbors, the corresponding weights (ωij and ωji)

probably do not have the same value. By carefully choosing the number of nearest

neighbors k, W shall interpret the local properties of the original high-dimensional

data, and by design, embedded low-dimensional data Y is interpolated by the same

weight matrix W, thus leading to the following:

Y = Argmin
Y(i)

|Y(i) −
∑
j

ωijY
(j)|

2
. (2)

The cost function in the above minimization problem essentially defines a quadratic

form.

ε(Y) =
∑
ij

Mij(Y
(i) ·Y(j)), (3)

in which the components of M are

Mij = δij − ωij − ωji +
∑
l

ωliωlj , (4)

where δij = 1 if i = j; otherwise, δij = 0. By solving Eq.(2), LLE then finds the lower-

dimensional embedding system by computing the bottom d + 1 eigenvectors of M,

where d is the desired/prescribed dimensionality of the embedded space. Discarding

the bottom eigenvector (the corresponding eigenvalue is zero), the remaining d non-

zero eigenvectors provide an ordered set of orthogonal coordinates of the original data

in the feature space.
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3. Estimation of dimensionality based on LLE

3.1. Role of imposed dimensionality d

In the original version of LLE proposed by Saul and Roweis (2000), the two indepen-

dent parameters involved in LLE are the number of nearest neighbors per data point

k and embedding space dimensionality d.
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Figure 1. (Left) Original 3D data distributed along 2D manifold.

(Middle) Embedded coordinates of original points using LLE with d = 2 and k = 12.

(Right) Embedded coordinates of original points using LLE with overestimated embedded

dimensionality d = 3

We underline that a manifold’s intrinsic dimensionality din may be known a priori

in some applications, while in the great majority of other cases, din is unknown and

the users wish to bias the embedding of a particular dimensionality. Unfortunately, the

intrinsic dimensionality can not be readily estimated in reality, and an underestimate

of embedded dimensionality (d < din) will easily screw up the results since it is

impossible to properly describe data of a high dimensionality in a low-dimensional

space. Moreover, even for the case where d is overestimated, i.e., d > din, it was

reported that LLE might behave pathologically [4]. Figure 1 is such an example

where extraneous information was “added” to the intrinsically 2D linear manifold,

making it non-linear.

In summary, an improperly chosen prescribed dimensionality can lead to the

underperformance of LLE, and it is of vital importance to know the intrinsic dimen-

sionality din of the original data before employing the algorithm.

3.2. Weight preserving

Another issue concerning LLE is its neighborhood-preserving property. Saul and

Roweis (2000) considered LLE as a neighborhood-preserving approach; that is to say,

the original data points within a typical vicinity probably remain in the same nearest

neighborhood in the embedded system. Despite being the essential intuition of LLE,

this neighborhood-preserving property was neither guaranteed by Eq.(1) nor Eq.(2).

Figure 2 shows the embedded coordinates of the benchmark S-curve by employing

LLE. The neighbors of an arbitrarily chosen point (marked by the red asterisk) were
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compared before and after embedding; these are indicated by blue and red circles,

respectively. It is found that, even for such a simple 3D example, the neighborhood

connectivity of a given point is not 100% guaranteed, and for all of the k = 12

neighbors, only six of them were preserved by the embedding (black diamond).

current point
neighbors of embedded space

common neighbors
neighbors of original space

Figure 2. Alteration of neighbors of arbitrary point after embedding using LLE

Here, one should be aware of the difference between weights and neighborhoods.

During the first step of the implementation of LLE, the weights are calculated by

reconstructing a given point in the original space with its nearest k neighbors (see

Eq.(1)) in the aim of characterizing the local properties of the original data. However,

in the embedded space, these weights are linear coefficients corresponding to a group

of embedded points, which belong to the same neighborhood in the original instead

of the embedded space. In this manner, the neighborhood is not guaranteed in the

lower-dimensional space. Thus, we consider the basic LLE as a weight-preserving

rather than a neighborhood-preserving algorithm.

3.3. Evaluation of intrinsic dimensionality

In view of the weight-preserving rather than the neighborhood-preserving property of

LLE, we expect to have some knowledge on the validity/faithfulness of the embedding

by quantifying the alterations/evolution of the neighborhoods of all data points. Two

coordinate systems (X and Y) are thus defined to refer to the initial and embedded

system, respectively.

Suppose V(i) collects all of the reference numbers of the neighbors of X(i). We

first define operation diff(·) between V(i) and V(j), which returns the number of

common components in the two vectors. As a consequence, diff(V
(i)
X ,V

(i)
Y ) provi-

des the number of preserved neighbors for point X(i) in two systems. For example,

diff(V
(1)
X ,V

(1)
Y ) = diff(V

(2)
X ,V

(2)
Y ) = 2 as illustrated in Figure 3. Similarly, this

operation could be extended to two matrices.

diff(VX,VY) =

N∑
l=1

diff(V
(l)
X ,V

(l)
Y ) (5)

where N is the number of sample points at hand or the column number of both

matrices.
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Figure 3. Connectivity/vicinity of points before and after embedding

Based on Eq.(5), we consequently propose the concept of a “neighborhood-

preserving ratio” that quantifies the evolution of a neighborhood before and after

embedding.

γ(d) =
diff(VX,VY)

k ·N
× 100%. (6)

Quite obviously, the value of γ varies between 0% and 100%; in general, the larger this

value is, the better preserved the neighborhood is. It is logical (and certainly intui-

tive) to expect that the neighborhoods of each point change slightly if the embedding

persists the original information, while they change dramatically if the embedded

dimensionality is wrongly chosen. By “wrongly,” we mean that embedded dimen-

sionality d was too small to describe the high-dimensional data properly or, to be

simple, d < din. With this consideration, a “telltale gap” may be observed between

γ(d) and γ(d+1), indicating that the original data lies in a d−dimensional space. We

consequently summarize that the “neighborhood-preserving ratio” provides us with

an estimate of the intrinsic dimensionality of the original data.

Another way of evaluating the intrinsic dimensionality using the proposed cri-

terion may consist of choosing a proper threshold value ε for γ. By increasing the

prescribed dimensionality, the intrinsic dimensionality of the original data points is

estimated by d until γ(d) > ε. However, the choice of the threshold value may be

problem-dependent; an empirical value will be found in the following section, referring

to several benchmark cases.

4. Examples

4.1. Examples on artificial noiseless data

We choose several manifolds embedded initially in 3D space, including an S-shape

curve, a Swiss roll, and a flat surface for verifying the efficiency of the proposed crite-

rion. The first two manifolds are benchmarks of nonlinear dimensionality reduction,
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while the third one is proposed for comparison purposes. For all three cases, the

input of LLE consists of N = 2000 points sampled randomly from the continuous 3D

surfaces in Figure 4.

Figure 4. Original data sampled from 3D manifolds: S-shape curve (left); Swiss roll (middle);

flat surface (right)

By following Eqs.(1)–(4), LLE is performed blindly with imposed dimensionality

d varying form 1 to 10 without knowing a priori the intrinsic dimensionality. Figu-

res 5–7 present the corresponding neighborhood-preserving ratios γ with respect to

different embedded dimensionalities d.
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Figure 5. Neighborhood-preserving ratios for S-shape curve
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Figure 6. Neighborhood-preserving ratios for Swiss roll
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Figure 7. Neighborhood-preserving ratios for plane surface

As clearly indicated in the three d − γ(d) diagrams, a telltale gap can always

be observed between γ(1) and γ(2) regardless of the number of neighbors chosen

(k = 8, 10, 15). This should demonstrate that the intrinsic dimensionality of each

manifold is din = 2.

One may argue that embedding this 3D data in higher-dimensional spaces (d > 3)

makes little sense since the dimensionality of the original data points is 3 and we are

certain that din shall never exceed this value. In this work, the ratios of the neig-

hborhood preserving corresponding to the higher-dimensional embedded spaces were

provided with the aim of showing that the neighborhood-preserving ratios stabilized

when the embedded dimensionality exceeds the intrinsic one.

Moreover, we noticed in some cases that we are probably yielding an even worse

embedding while increasing the embedded dimensionality; e.g., γ(3) < γ(2) as obser-

ved in Figure 5 and Figure 7. This observation in fact does not impose any restriction

on the estimation of intrinsic dimensionality, and it confirms the numerical instability

of LLE stated in Section 3.1.

Finally, we list the neighborhood-preserving ratios for d = 1, 2, 3 in Table 1 while

setting k = 12; the aim of this is to find an empirical threshold for the criterion.

Despite the three manifolds shown in Figure 4, two other supplemental examples

(i.e., a partial sphere [an intrinsic 2D manifold] and a straight line [an intrinsic 1D

manifold]) are provided.

Table 1
Intrinsic dimensionality detected by LLE-based criterion (k = 12)

d = 3 d = 2 d = 1 din reference value

S-curve 74.85% 79.48% 12.84% 2 2

Swiss roll 77.58% 65.92% 18.50% 2 2

Plane surface 52.65% 59.40% 18.99% 2 2

Partial Sphere 90.22% 85.85% 15.85% 2 2

Straight line 99.81% 99.55% 99.97% 1 1
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The readers are invited to refer to [6] for more details about these manifolds.

Except for the coincidence of the estimated and reference intrinsic dimensionality, we

conclude from Table 1 that 50% may be a reasonable value for criterion γ. (Infor-

mally, we recommend the embedding as “faithful” if the majority of the topological

relationships remain unchanged.) Therefore, intrinsic dimensionality d of the original

data can also be evaluated if γ(d) > 50% and γ(d − 1) < 50%. However, we will

later find this threshold value problem-dependent, and it would be more practical to

combine it with the telltale gap observed in the d− γ(d) diagram.

4.2. Robustness verification on noisy data

This section focuses on the stability of the criterion when applied to noisy data. The

S-shape was adopted for illustration purposes, and a zero-mean normally distributed

noise was added to the coordinates of the points. The standard deviation of the noise

was set to 2% of the smallest dimension of the bounding box that encloses the entire

data set.

As in Figure 8, the intrinsic dimensionality of the noisy data was estimated to

be din = 3 when k = 8 neighbors were considered while din = 2 for the other two

cases. Clearly, there was an overestimation when fewer neighbors were considered.

Fortunately, this phenomenon could likely be alleviated by including more neighbors.
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Figure 8. Neighborhood-preserving ratios for noisy S-shape curve

On the other hand, it is proposed in [1] that a larger number of data points or

a lesser-curved manifold can render a substantially better degree of noise tolerance.

Despite being reported with regard to ISOMAP (another non-linear dimensionality

reduction algorithm), this phenomenon will be validated for LLE. To this end, we

sampled the same manifold again but more densely (i.e., N = 4000) with the same

level of 2% error. The d − γ(d) diagram is presented in Figure 9. It can be noticed

that the intrinsic dimensionality is accurately estimated even with k = 8, and the

proposed criterion is quite stable for noisy data.
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Figure 9. Neighborhood-preserving ratio for noisy S-shape curve

4.3. Example on grayscale images

By now, the proposed criterion has been validated on both noiseless and noisy data

and was proven to be stable. However, the original data involved in these examples

is always three-dimensional, and none of it is initially expanded in high-dimensional

space. In this part, a series of grayscale images are chosen as input data to verify the

validity of the criterion on high-dimensional data.

The dataset consists of 500 grayscale images of a black square moving in a more

extensive domain. With 113 pixel points along each direction, the original dimensio-

nality of the image was D = 12769. It is known a priori that all of these images should

lie on a constrained manifold, parameterized by two variables (x0, y0) defining its po-

sition plus rotation angle θ, Figure 10; thus, the underlying intrinsic dimensionality

of these images should be din = 3.

Figure 10. Grayscale images defined on three parameters

In Figure 11, we figured out that 50% may become unreliable as the threshold

value for intrinsic dimensionality estimation. This failure can be partially attributed

to the numerical instability of LLE. However, a clear “elbow” observed around d = 3

suggests that din = 3 can still be an estimate for the original data. Moreover, we note
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that, different from Figures 5–7, embedding the greyscale images in the space where

d = 4, 5, 6 . . . 10 makes sense, and we see that the criterion value is more stable since

these embeddings are not only “faithful” (d > din) but also “reasonable” (D > d).
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Figure 11. Neighborhood-preserving ratio for grayscale images

5. Conclusions and perspectives

In the current work, we have discussed two issues concerning LLE: the numerical insta-

bility concerning the embedded dimensionality and the neighborhood-preserving pro-

perty. Theoretically, by performing LLE, one can embed the original high-dimensional

data in any space (whatever its dimensionality); this former issue provoked the ne-

cessity of inferring the intrinsic dimensionality of the original data in an endeavor

to find out the most compact description in the feature space. Taking into account

the second issue (i.e., the evolution of neighborhoods before and after embedding), we

proposed a criterion based on the ratio of preserved neighbors to estimate the intrinsic

dimensionality of the original dataset. That is, we first performed LLE blindly with

different imposed dimensionality d and successively depict the corresponding d−γ(d)

diagram from which the most faithful embedding in din−dimensional space is found.

The proposed criterion has been verified on a series of artificially generated data,

covering both high- and low-dimensional one. For the illustrative examples, the pro-

posed criterion stabilizes with an increasing dimension, and a “telltale gap”” can

systematically be observed on the d − γ(d) diagram. However, the present criterion

relies on a heuristic basis; a theoretical basis is still needed.
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