PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the three-phase flow of the water transfer export elbow of natural gas hydrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Euler multiphase flow and population equilibrium model were used to simulate the three-phase flow field in the bubble expansion stage of the outlet curved pipe section. The influence of the ratio of the bending diameter and the volume fraction of the gas phase on the pressure loss is revealed, and the safety range of the optimum bending diameter ratio and the volume fraction of the outlet gas phase is determined. The results show that the three-phase flow in the tube is more uniformly distributed in the vertical stage, and when the pipe is curved, the liquid-phase close to the pipe wall gathers along the pipe flank to the outside of the pipe, the solid phase is transferred along the pipe flank to the inside of the pipe, and the gas phase shrinks along the pipe flank to the inner centre. The maximum speed of each phase of the three-phase flow in the elbow is at the wall of the tube from 45° to 60° inside the elbow, and the distribution law along the axial direction of the pipe is about the same as the distribution law of volume fraction. The pressure loss of the elbow decreases with the increase of the bend diameter ratio, when the bend diameter ratio increases to 6, the pressure loss of the pipe decreases sharply, and the pressure loss decreases slowly with the increase of the bend diameter ratio. When the gas phase volume score in the elbow reaches 70%, there will be an obvious wall separation phenomenon, to keep the system in a stable working state and prevent blowout, the gas phase volume score should be controlled within 60%.
Rocznik
Strony
239--258
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Hunan University of Humanities, Department of Energyand Electrical Engineering, Science and Technology, Loudi, Hunan 417000, China
  • Central South University, School of Mechanical and Electrical Engineering, Changsha, Hunan 410083, China
  • State Key Laboratory of High Performance Complex Manufacturing, Changsha, Hunan 410083, China
autor
  • Central South University, School of Mechanical and Electrical Engineering, Changsha, Hunan 410083, China
  • State Key Laboratory of High Performance Complex Manufacturing, Changsha, Hunan 410083, China
autor
  • Central South University, School of Mechanical and Electrical Engineering, Changsha, Hunan 410083, China
  • State Key Laboratory of High Performance Complex Manufacturing, Changsha, Hunan 410083, China
  • Central South University, School of Mechanical and Electrical Engineering, Changsha, Hunan 410083, China
  • State Key Laboratory of High Performance Complex Manufacturing, Changsha, Hunan 410083, China
Bibliografia
  • [1] Y.F. Makogon, S.A. Holditch, T.Y. Makogon, Natural gas-hydrates -a potential energy source for the 21st century. Journal of Petroleum Science & Engineering 56 (3), 14-31 (2007). DOI: https://doi.org/10.1016/j.petrol.2005.10.009.
  • [2] H.L. Xu, W.Y. Kong, W.G. Hu, Analysis of influencing factors on suction capacity in seabed natural gas hydrate by cutter-suction exploitation. Journal of Central South University 25 (12), 2883-2895 (2018). DOI: https://doi.org/10.1007/s11771-018-3960-z.
  • [3] L.Y. Shang, S.L. Zhao, Z. Pan, T.L. Huang, Study on Kinetic Characteristics of Solid-Liquid Two-Phase in Transporting Pipeline of Natural Gas Hydrate. Advanced Materials Research 91 (4), 1814-1818 (2014). DOI: https://doi.org/10.4028/www.scientific.net/AMR.881-883.1814.
  • [4] A.V. Milkov, Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology 167 (2), 29-42 (2000). DOI: https://doi.org/10.1016/S0025-3227(00)00022-0.
  • [5] M.K. Kareem, W.M. Abed, H.K. Dawood, Numerical simulation of hydrothermal behavior in a concentric curved annular tube. Heat Transfer 20 (49), 156-164 (2020). DOI: https://doi.org/10.1002/htj.21732.
  • [6] Y.F. Makogon, Natural gas hydrates-A promising source of energy. Journal of Natural Gas Science and Engineering 2 (1), 49-59 (2010). DOI: https://doi.org/10.1016/j.jngse.2009.12.004.
  • [7] N. Wei, W. Sun, Y. Meng, S. Zhou, Q. Li, Annular phase behavior analysis during marine natural gas hydrate reservoir drilling. Shiyou Xuebao/Acta Petrol Sinica 38 (6), 710-720 (2017). DOI: https://doi.org/10.7623/syxb201706011.
  • [8] L. Jiang, N. Wei, J. Zhao, S. Zhou, K. Wu, The Experimental Simulation Technology and System of Solid Fluidization Exploitation of Marine Non-Diagenetic Natural Gas Hydrate. International Conference on Computational & Experimental Engineering and Sciences 21 (4), 81-83 (2019). DOI: https://doi.org/10.32604/icces.2019.04515.
  • [9] S. Zhou, J. Zhao, Q. Li, W. Chen, J. Zhou, W. Na, Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization. Natural Gas Industry B 5 (2), 118-131 (2018). DOI: https://doi.org/10.1016/j.ngib.2018.01.004.
  • [10] S. Afzali, S. Zendehboudi, O. Mohammadzadeh, N. Rezaei, Hybrid mathematical modelling of three-phase flow in porous media: application to water-alternating-gas injection. Journal of Natural Gas Science and Engineering 4, 103966 (2021). DOI: https://doi.org/10.32604/icces.2019.04515.
  • [11] H. Li, S. Ma, Effect of thickness ratio of overlaying layer to hydrate bearing stratum upon the settlement of seabed sediments during natural gas hydrate dissociation. IOP Conference Series Earth and Environmental Science 526, 012135 (2020). DOI: https://doi.org/10.32604/icces.2019.04515.
  • [12] L. Li, H.L. Xu, F.Q. Yang, Three-phase flow of submarine gas hydrate pipe transport. Journal of Central South University 22 (9), 3650-3656 (2015). DOI: https://doi.org/10.1007/s11771-015-2906-y.
  • [13] H.H. Zhan, H. Zhu, J.D. Chen, G. Wang, Numerical Simulation of Secondary Flow (Dean Vortices) in 90° Curved Tube. Boiler Technology 41 (4), 45-54 (2010). DOI: https://doi.org/10.1016/j.ces.2018.10.029.
  • [14] X. Su, W. Gao, X. Liu, C. Xie, B. Xu, Numerical simulation of a three-dimensional flow field in compact spinning with a perforated drum: Effect of a guiding device. Textile Research Journal 83 (19), 2093-2108 (2013). DOI: https://doi.org/10.1177/0040517513483859.
  • [15] C.A. Koh, Towards a fundamental understanding of natural gas hydrates. Chemical Society Reviews 31 (3), 157- 167 (2002). DOI: https://doi.org/10.1039/b008672j.
  • [16] M.T. Reshma, M. Kumar, L. Rao, Numerical modelling of oxygen mass transfer in diffused aeration systems: A CFDPBM approach. Journal of Water Process Engineering 40, 101920. DOI: https://doi.org/10.1016/j.jwpe.2021.101920.
  • [17] T. Wang, J. Wang, J. Yong, A CFD-PBM coupled model for gas-liquid flows. Aiche Journal 52 (1), 125-140 (2010). DOI: https://doi.org/10.1002/aic.10611.
  • [18] S.Z. Kassab, H.A. Kandil, H.A. Warda, Experimental and analytical investigations of airlift pumps operating in three-phase flow. Chemical Engineering Journal 131 (3), 273-281 (2007). DOI: https://doi.org/10.1016/j.cej.2006.12.009.
  • [19] H. Kato, T. Miyazawa, S. Timaya, A study of an air-lift pump for solid particles. Jsme International Journal 18 (117), 286-294 (2008). DOI: https://doi.org/10.1299/jsme1958.18.286.
  • [20] X. Yin, I. Zarikos, N.K. Karadimitriou, A. Raoof, S.M. Hassanizadeh, Direct Simulations of Two-phase Flow Experiments of Different Geometry Complexities Using Volume-of-Fluid (VOF) Method. Chemical Engineering Science 43 (2), 112-123 (2018). DOI: https://doi.org/10.1016/j.ces.2018.10.029.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8626e20-f3fc-40ba-9e78-4c94f48e8683
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.