CIRCULANT MATRICES: NORM, POWERS, AND POSITIVITY

Marko Lindner
Communicated by P.A. Cojuhari

Abstract

In their recent paper "The spectral norm of a Horadam circulant matrix", Merikoski, Haukkanen, Mattila and Tossavainen study under which conditions the spectral norm of a general real circulant matrix \mathbf{C} equals the modulus of its row/column sum. We improve on their sufficient condition until we have a necessary one. Our results connect the above problem to positivity of sufficiently high powers of the matrix $\mathbf{C}^{\top} \mathbf{C}$. We then generalize the result to complex circulant matrices.

Keywords: spectral norm, circulant matrix, eventually positive semigroups.
Mathematics Subject Classification: 15A60, 15B05, 15B48.

1. INTRODUCTION AND PRELIMINARIES

For $n \in \mathbb{N}$ and $\mathbf{x}=\left(x_{0}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n}$, look at the circulant matrix

$$
\mathbf{C}_{\mathbf{x}}:=\left(\begin{array}{cccc}
x_{0} & x_{1} & \cdots & x_{n-1} \\
x_{n-1} & x_{0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & x_{1} \\
x_{1} & \cdots & x_{n-1} & x_{0}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

Motivated by studies of so-called Horadam or Fibonacci circulant matrices, the authors of $[2,3]$ ask in [2] under which conditions the spectral norm of $\mathbf{C}_{\mathbf{x}}$ equals $\mid x_{0}+x_{1}+$ $\ldots+x_{n-1} \mid$. We give a sufficient and a necessary condition. Both have to do with the positivity of powers of $\mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}}$.

If $\mathbf{R}:=\mathbf{C}_{(0,1,0, \ldots, 0)}$ denotes the cyclic backward shift $\mathbf{R}:\left(u_{1}, \ldots, u_{n}\right) \mapsto$ $\left(u_{2}, \ldots, u_{n}, u_{1}\right)$, then
$\mathbf{C}_{\mathbf{x}}=x_{0} \mathbf{R}^{0}+x_{1} \mathbf{R}^{1}+\ldots+x_{n-1} \mathbf{R}^{n-1}=c(\mathbf{R}) \quad$ with $\quad c(t):=x_{0} t^{0}+x_{1} t^{1}+\ldots+x_{n-1} t^{n-1}$.

The polynomial c is called the symbol of $\mathbf{C}_{\mathbf{x}}$. Most of the time, we understand c as a function on

$$
\mathbb{T}_{n}:=\left\{t \in \mathbb{C}: t^{n}=1\right\}=\left\{\omega^{0}, \omega^{1}, \ldots, \omega^{n-1}\right\} \quad \text { with } \quad \omega:=\exp \left(\frac{2 \pi}{n} \mathrm{i}\right)
$$

It is easy to see that \mathbf{R} diagonalizes as $\mathbf{R}=\mathbf{F D F}^{*}$, where $\mathbf{D}=\operatorname{diag}\left(\omega^{0}, \ldots, \omega^{n-1}\right)$ and \mathbf{F} is the so-called Fourier matrix $\frac{1}{\sqrt{n}}\left(\omega^{j k}\right)_{j, k=0}^{n-1}$. Note that \mathbf{F} is unitary, so that $\mathbf{F}^{-1}=\mathbf{F}^{*}$. Consequently,

$$
\mathbf{C}_{\mathbf{x}}=c(\mathbf{R})=c\left(\mathbf{F} \mathbf{D F}^{*}\right)=\mathbf{F} c(\mathbf{D}) \mathbf{F}^{*}=\mathbf{F} \operatorname{diag}\left(c\left(\omega^{0}\right), \ldots, c\left(\omega^{n-1}\right)\right) \mathbf{F}^{*}=\mathbf{F D}_{\mathbf{x}} \mathbf{F}^{*}
$$

with $\mathbf{D}_{\mathbf{x}}:=\operatorname{diag}\left(c\left(\omega^{0}\right), \ldots, c\left(\omega^{n-1}\right)\right)$. Since \mathbf{F} is an isometry of \mathbb{C}^{n} with the Euclidean norm,

$$
\begin{equation*}
\left\|\mathbf{C}_{\mathbf{x}}\right\|=\left\|\mathbf{F} \mathbf{D}_{\mathbf{x}} \mathbf{F}^{*}\right\|=\left\|\mathbf{D}_{\mathbf{x}}\right\|=\max \left(\left|c\left(\omega^{0}\right)\right|,\left|c\left(\omega^{1}\right)\right|, \ldots,\left|c\left(\omega^{n-1}\right)\right|\right)=:\|c\|_{\infty} \tag{1.1}
\end{equation*}
$$

where $\|\cdot\|$ denotes the spectral norm of a matrix; it is the matrix norm that is induced by the Euclidean norm. Of course, all of this is standard [1]. The Fourier transform \mathbf{F} turns the convolution $\mathbf{C}_{\mathbf{x}}$ into a multiplication $\mathbf{D}_{\mathbf{x}}$. We are just fixing notations here.

The question of [2] is essentially, under which conditions

$$
\begin{equation*}
\left\|\mathbf{C}_{\mathbf{x}}\right\|=\|c\|_{\infty} \quad \text { equals } \quad\left|x_{0}+x_{1}+\ldots+x_{n-1}\right|=|c(1)|=\left|c\left(\omega^{0}\right)\right| \tag{1.2}
\end{equation*}
$$

So let

$$
\mathcal{C}_{n}:=\left\{\mathbf{x}=\left(x_{0}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n}:\left\|\mathbf{C}_{\mathbf{x}}\right\|=\left|x_{0}+x_{1}+\ldots+x_{n-1}\right|\right\} .
$$

Looking at (1.2), we see that
$\mathbf{x} \in \mathcal{C}_{n} \Longleftrightarrow\|c\|_{\infty}=|c(1)|, \quad$ i.e. $|c(\cdot)|$ assumes its maximum on \mathbb{T}_{n} at $t=1=\omega^{0}$.
We will work with the latter condition in what follows. We will also study the following subset of \mathcal{C}_{n} if $n \geq 2$. Let

$$
\mathcal{C}_{n}^{\prime}:=\left\{\mathbf{x} \in \mathcal{C}_{n}: \max _{t \in \mathbb{T}_{n} \backslash\{1\}}|c(t)|<|c(1)|=\|c\|_{\infty}\right\} \subset \mathcal{C}_{n} .
$$

While, for $\mathbf{x} \in \mathcal{C}_{n}$, the maximum of $|c(\cdot)|$ in \mathbb{T}_{n} is attained at $t=1$, for $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$ it is only attained at $t=1$, so that $\mathbf{C}_{\mathbf{x}}$ has a spectral gap between the two largest (in modulus) eigenvalues. We start with a simple sufficient condition for membership in \mathcal{C}_{n} and \mathcal{C}_{n}^{\prime}, respectively. Here we write $\mathbf{x} \geq \mathbf{0}(\mathbf{x}>\mathbf{0})$ or $\mathbf{M} \geq \mathbf{0}(\mathbf{M}>\mathbf{0})$ if each entry of, respectively, the vector \mathbf{x} or the matrix \mathbf{M} is nonnegative (positive).

Lemma 1.1. Let $n \geq 2$ and $\mathbf{x} \in \mathbb{R}^{n}$.
a) If $\mathbf{x} \geq \mathbf{0}$ or $-\mathbf{x} \geq \mathbf{0}$ (i.e. $\left.\pm \mathbf{C}_{\mathbf{x}} \geq \mathbf{0}\right)$ then $\mathbf{x} \in \mathcal{C}_{n}$. (This is [2, Corollary 2].)
b) If $\mathbf{x}>\mathbf{0}$ or $-\mathbf{x}>\mathbf{0}\left(\right.$ i.e. $\left.\pm \mathbf{C}_{\mathbf{x}}>\mathbf{0}\right)$ then $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$.

Proof. a) By triangle inequality, every $|c(t)|$ with $t \in \mathbb{T}_{n}$ is bounded as follows

$$
|c(t)|=\left|x_{0}+x_{1} t^{1}+\ldots+x_{n-1} t^{n-1}\right| \leq\left|x_{0}\right|+\left|x_{1}\right|+\ldots+\left|x_{n-1}\right| \quad \text { since } \quad|t|=1
$$

But this upper bound, and hence the maximum $\|c\|_{\infty}$, is attained by $|c(1)|=\mid x_{0}+$ $\ldots+x_{n-1} \mid$ as soon as all x_{k} have the same sign, $\mathbf{x} \geq \mathbf{0}$ or $-\mathbf{x} \geq \mathbf{0}$.
b) The statement can be derived by the Perron-Frobenius theorem but here is a more elementary proof. Let $\mathbf{x}>\mathbf{0}$. (The argument is similar for $-\mathbf{x}>\mathbf{0}$.) By a), we have $|c(1)|=\|c\|_{\infty}$. For every $t \in \mathbb{T}_{n} \backslash\{1\}$, it holds $\left|x_{0}+x_{1} t\right|<\left|x_{0}\right|+\left|x_{1} t\right|$ since $x_{0}, x_{1}>0$ and 1 and t have different directions in \mathbb{C}. Consequently, noting that $|t|=1$,

$$
\begin{aligned}
|c(t)| & =\left|x_{0}+x_{1} t^{1}+\ldots+x_{n-1} t^{n-1}\right| \leq \underbrace{\left|x_{0}+x_{1} t\right|}_{<\left|x_{0}\right|+\left|x_{1} t\right|}+\left|x_{2} t^{2}\right|+\ldots+\left|x_{n-1} t^{n-1}\right| \\
& <\left|x_{0}\right|+\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n-1}\right|=x_{0}+\ldots+x_{n-1}=c(1)=|c(1)|=\|c\|_{\infty} .
\end{aligned}
$$

This sufficient condition for membership in \mathcal{C}_{n} or \mathcal{C}_{n}^{\prime} seems quite generous. [2] suggests the following improvement. Put

$$
\begin{equation*}
\mathbf{B}_{\mathbf{x}}:=\mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}}=\mathbf{C}_{\mathbf{x}}^{*} \mathbf{C}_{\mathbf{x}}=\left(\mathbf{F D}_{\mathbf{x}} \mathbf{F}^{*}\right)^{*}\left(\mathbf{F D}_{\mathbf{x}} \mathbf{F}^{*}\right)=\mathbf{F D}_{\mathbf{x}}^{*} \mathbf{D}_{\mathbf{x}} \mathbf{F}^{*}=\mathbf{F} \mathbf{A}_{\mathbf{x}} \mathbf{F}^{*} \tag{1.3}
\end{equation*}
$$

with

$$
\mathbf{A}_{\mathbf{x}}:=\mathbf{D}_{\mathbf{x}}^{*} \mathbf{D}_{\mathbf{x}}=\operatorname{diag}\left(b\left(\omega^{0}\right), \ldots, b\left(\omega^{n-1}\right)\right)
$$

where

$$
b(t):=\overline{c(t)} c(t)=|c(t)|^{2} \quad \text { for all } \quad t \in \mathbb{T}_{n}
$$

so that

$$
\|b\|_{\infty}:=\max _{t \in \mathbb{T}_{n}}|b(t)|=\max _{t \in \mathbb{T}_{n}}|c(t)|^{2}=\|c\|_{\infty}^{2}
$$

Then $\mathbf{B}_{\mathbf{x}}$ is again a real circulant matrix. Applying Lemma 1.1 to $\mathbf{B}_{\mathbf{x}}$ (in place of $\mathbf{C}_{\mathbf{x}}$), we get the following result.
Lemma 1.2. Let $n \geq 2, \mathbf{x} \in \mathbb{R}^{n}$ and put $\mathbf{B}_{\mathbf{x}}:=\mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}}$.
a) If $\mathbf{B}_{\mathbf{x}} \geq \mathbf{0}$ then $\mathbf{x} \in \mathcal{C}_{n}$. (This is [2, Theorem 4].)
b) If $\mathbf{B}_{\mathbf{x}}>\mathbf{0}$ then $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$.

Proof. Recall that the symbol b of $\mathbf{B}_{\mathbf{x}}$ is related to the symbol c of $\mathbf{C}_{\mathbf{x}}$ by $b(t)=|c(t)|^{2}$ for all $t \in \mathbb{T}_{n}$. So b assumes its maximum at the same point(s) as $|c(\cdot)|$ does.

For a), by Lemma 1.1 a),

$$
\mathbf{B}_{\mathbf{x}} \geq \mathbf{0} \Rightarrow\|b\|_{\infty}=|b(1)| \Rightarrow\|c\|_{\infty}^{2}=|c(1)|^{2} \Rightarrow\|c\|_{\infty}=|c(1)| \Rightarrow \mathbf{x} \in \mathcal{C}_{n}
$$

b) By Lemma 1.1 b), positivity $\mathbf{B}_{\mathbf{x}}>\mathbf{0}$ implies that $|b(t)|<\|b\|_{\infty}$ for all $t \in \mathbb{T}_{n} \backslash\{1\}$. But then also $|c(t)|=|b(t)|^{1 / 2}<\|b\|_{\infty}^{1 / 2}=\|c\|_{\infty}$ for all $t \in \mathbb{T}_{n} \backslash\{1\}$. So $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$.

Note that the case $-\mathbf{B}_{\mathbf{x}} \geq \mathbf{0}$ is impossible (unless $\mathbf{x}=\mathbf{0}$, in which case $\mathbf{B}_{\mathbf{x}}=\mathbf{0}$) since the main diagonal of $\mathbf{B}_{\mathbf{x}}$ carries the entry $\|\mathbf{x}\|_{2}^{2}$.

2. ITERATING THE ARGUMENT UNTIL SUFFICIENT BECOMES NECESSARY

Looking at Lemmas 1.1 and 1.2, the following questions seem natural:
(Q1) Is the new condition $\mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}} \geq \mathbf{0}$ substantially weaker than the old condition $\pm \mathrm{C}_{\mathrm{x}} \geq 0$?
(Q2) Do we get a chain of increasingly weaker sufficient conditions if we repeat the argument?
(Q3) Does that chain end in a necessary condition?
Let us address those questions, starting with (Q1): It is easy to see that for $n \in\{1,2\}$, the two conditions are equivalent but for $n \geq 3$ they differ. Table 1 below indicates that the quotient of their probabilities grows as n grows. As an example for $n=3$, look at $\mathbf{x}=(1,-2,-3)$, where
$\mathbf{C}_{\mathbf{x}}=\left(\begin{array}{ccc}1 & -2 & -3 \\ -3 & 1 & -2 \\ -2 & -3 & 1\end{array}\right) \nsucceq \mathbf{0}, \quad-\mathbf{C}_{\mathbf{x}} \nsupseteq \mathbf{0} \quad$ but $\quad \mathbf{B}_{\mathbf{x}}:=\mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}}=\left(\begin{array}{ccc}14 & 1 & 1 \\ 1 & 14 & 1 \\ 1 & 1 & 14\end{array}\right) \geq \mathbf{0}$.
So Lemma 1.1 is not strong enough to show $\mathbf{x} \in \mathcal{C}_{3}$, i.e. $\left\|\mathbf{C}_{\mathbf{x}}\right\|=|1-2-3|=4$, but Lemma 1.2 is.

About (Q2): With $\mathbf{B}_{\mathbf{x}}=\mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}}$, let us now look at $\mathbf{B}_{\mathbf{x}}^{\top} \mathbf{B}_{\mathbf{x}}$. But since $\mathbf{B}_{\mathbf{x}}^{\top}=\mathbf{B}_{\mathbf{x}}$, one has $\mathbf{B}_{\mathbf{x}}^{\top} \mathbf{B}_{\mathbf{x}}=\mathbf{B}_{\mathbf{x}}^{2}$. This is still a circulant, to which we can apply Lemma 1.1. Then one can again multiply $\mathbf{B}_{\mathbf{x}}^{2}$ with its transpose (itself) or just with $\mathbf{B}_{\mathbf{x}}$ and continue like that.

Theorem 2.1. Let $n \geq 2, \mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{B}_{\mathbf{x}}=\mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}}$.
a) If $\mathbf{B}_{\mathbf{x}}^{m} \geq \mathbf{0}$ for some $m \in \mathbb{N}$ then $\mathbf{x} \in \mathcal{C}_{n}$.
b) If $\mathbf{B}_{\mathbf{x}}^{m}>\mathbf{0}$ for some $m \in \mathbb{N}$ then $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$.

Proof. For every $m \in \mathbb{N}$, we have, by (1.3),

$$
\begin{align*}
\mathbf{B}_{\mathbf{x}}^{m} & =\mathbf{F} \mathbf{A}_{\mathbf{x}}^{m} \mathbf{F}^{*}=\mathbf{F} \underset{k=0}{\operatorname{diag}_{k-1}^{n-1} b\left(\omega^{k}\right)^{m}} \mathbf{F}^{*} \tag{2.1}\\
\text { so that }\left\|\mathbf{B}_{\mathbf{x}}^{m}\right\| & ={\underset{k=0}{n-1}\left|b\left(\omega^{k}\right)\right|^{m}=\|b\|_{\infty}^{m}=\|c\|_{\infty}^{2 m}}^{\max ^{m}}
\end{align*}
$$

So $\mathbf{B}_{\mathbf{x}}^{m}$ is a circulant matrix with symbol $t \mapsto b(t)^{m}=|c(t)|^{2 m}$. It assumes its maximum at the same point(s) of \mathbb{T}_{n} as $|c(\cdot)|$ does. Now argue as in the proof of Lemma 1.2.

Looking at $m=2^{0}, 2^{1}, 2^{2}, \ldots$ and noting that $\mathbf{M}, \mathbf{N} \geq \mathbf{0}$ implies $\mathbf{M} \cdot \mathbf{N} \geq \mathbf{0}$, we get that

$$
\begin{aligned}
& \pm \mathbf{C}_{\mathbf{x}} \geq 0 \Rightarrow \mathbf{B}_{\mathbf{x}} \geq \mathbf{0} \Rightarrow \mathbf{B}_{\mathbf{x}}^{2} \geq \mathbf{0} \Rightarrow \mathbf{B}_{\mathbf{x}}^{4} \geq \mathbf{0} \Rightarrow \mathbf{B}_{\mathbf{x}}^{8} \geq \mathbf{0} \Rightarrow \cdots \Rightarrow \mathbf{x} \in \mathcal{C}_{n}, \\
& \pm \mathbf{C}_{\mathbf{x}}>0 \Rightarrow \mathbf{B}_{\mathbf{x}}>\mathbf{0} \Rightarrow \mathbf{B}_{\mathbf{x}}^{2}>\mathbf{0} \Rightarrow \mathbf{B}_{\mathbf{x}}^{4}>\mathbf{0} \Rightarrow \mathbf{B}_{\mathbf{x}}^{8}>\mathbf{0} \Rightarrow \cdots \Rightarrow \mathbf{0} \in \mathcal{C}_{n}^{\prime} .
\end{aligned}
$$

To illustrate that these are indeed chains of increasingly weaker conditions, let us approximately compute ${ }^{1)}$ the portion of the unit ball in \mathbb{R}^{n} that satisfies the corresponding condition (see Table 1).

[^0]Table 1. An approximate computation of the portion of points $\mathbf{x} \in \mathbb{R}^{n}$ of the unit ball (note that all conditions are invariant under scaling of \mathbf{x}) that satisfy the corresponding condition in the header. Reading from left to right, every row seems to grow - in the limit - up to the portion of the ball that belongs to \mathcal{C}_{n}^{\prime}. This is a positive sign with respect to our question (Q3)

n	$\pm \mathbf{x}>\mathbf{0}$	$\mathrm{B}_{\mathrm{x}}>0$	$\mathrm{B}_{\mathrm{x}}^{2}>0$	$\mathrm{B}_{\mathrm{x}}^{4}>0$	$\mathrm{B}_{\mathrm{x}}^{8}>0$	$\mathrm{B}_{\mathrm{x}}^{16}>0$	$\mathrm{B}_{\mathrm{x}}^{32}>0$	\ldots	$\mathbf{x} \in \mathcal{C}_{n}^{\prime}$
$n=2$	50.0\%	50.0\%	50.0\%	50.0\%	50.0\%	50.0\%	50.0\%	\ldots	50.0\%
$n=3$	25.0\%	42.3\%	42.3\%	42.3\%	42.3\%	42.3\%	42.3\%	\ldots	42.3\%
$n=4$	12.5\%	25.0\%	27.3\%	28.9\%	29.8\%	30.3\%	30.5\%	\ldots	30.8\%
$n=5$	6.3\%	23.2\%	25.4\%	27.1\%	28.1\%	28.6\%	28.9\%	\cdots	29.2\%
$n=6$	3.1\%	16.7\%	20.0\%	21.9\%	22.8\%	23.1\%	23.3\%	\cdots	23.5\%
$n=7$	1.6\%	14.7\%	18.1\%	20.4\%	21.7\%	22.4\%	22.8\%	\cdots	23.2\%
$n=8$	0.8\%	10.4\%	14.3\%	16.8\%	18.1\%	18.8\%	19.2\%	\ldots	19.5\%
$n=9$	0.4\%	10.3\%	14.4\%	17.0\%	18.3\%	18.9\%	19.2\%	\cdots	19.5\%
$n=10$	0.2\%	7.5\%	11.6\%	14.3\%	15.7\%	16.3\%	16.6\%	\ldots	16.9\%
$n=20$	2^{-19}	1.9\%	5.2\%	7.9\%	9.4\%	10.1\%	10.4\%	\ldots	10.7\%

Finally, we turn to our question (Q3) about necessary conditions for membership in \mathcal{C}_{n} or \mathcal{C}_{n}^{\prime}. Nonnegativity / positivity of powers of $\mathbf{B}_{\mathbf{x}}$ is not necessary for membership in \mathcal{C}_{n} (see Example 2.3 below). But, assuming a spectral gap, i.e. membership in \mathcal{C}_{n}^{\prime}, we get convergence of the power method and hence positivity of large powers of $\mathbf{B}_{\mathbf{x}}$ (due to the special structure of the corresponding eigenvector).

Theorem 2.2. If $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$ then there exists an $m_{0} \in \mathbb{N}$ such that $\mathbf{B}_{\mathbf{x}}^{m}>\mathbf{0}$ for all $m \geq m_{0}$.
Proof. Let $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$ and abbreviate $\left|c\left(\omega^{k}\right)\right|=: c_{k}$ for $k=0, \ldots, n-1$. Then $\|c\|_{\infty}=$ $c_{0}>c_{1}, \ldots, c_{n-1} \geq 0$. From (2.1) we conclude

$$
\begin{align*}
\frac{\mathbf{B}_{\mathbf{x}}^{m}}{\left\|\mathbf{B}_{\mathbf{x}}^{m}\right\|} & =\frac{1}{c_{0}^{2 m}} \mathbf{F} \operatorname{diag}\left(c_{0}^{2 m}, c_{1}^{2 m}, \ldots, c_{n-1}^{2 m}\right) \mathbf{F}^{*}=\mathbf{F} \operatorname{diag}\left(1,\left(\frac{c_{1}}{c_{0}}\right)^{2 m}, \ldots,\left(\frac{c_{n-1}}{c_{0}}\right)^{2 m}\right) \mathbf{F}^{*} \\
& \rightarrow \mathbf{F} \operatorname{diag}(1,0, \ldots, 0) \mathbf{F}^{*}=\frac{1}{n}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\vdots & & \vdots \\
1 & \cdots & 1
\end{array}\right)>\mathbf{0} \quad \text { as } \quad m \rightarrow \infty, \tag{2.2}
\end{align*}
$$

so that $\mathbf{B}_{\mathbf{x}}^{m}>\mathbf{0}$ for all sufficiently large $m \in \mathbb{N}$.
The argument in the proof of Theorem 2.2 does not work if $|c(\cdot)|$ attains its maximum in another or in more than one point on \mathbb{T}_{n}. The following example shows that, indeed, \mathcal{C}_{n}^{\prime} cannot be replaced by \mathcal{C}_{n} in Theorem 2.2.

Example 2.3. Take $n=5$ and $\mathbf{C}_{\mathbf{x}}:=\mathbf{F} \operatorname{diag}(1,0,1,1,0) \mathbf{F}^{*}$. The diagonal has its maximum in the first but also in the 3 rd and 4 th position, so that $\mathbf{x} \in \mathcal{C}_{5} \backslash \mathcal{C}_{5}^{\prime}$. The first row of $\mathbf{C}_{\mathbf{x}}$ is $\mathbf{x}=\left(\frac{3}{5}, \alpha, \beta, \beta, \alpha\right)$ with $\alpha=\frac{1}{5}\left(1+2 \cos \left(\frac{4 \pi}{5}\right)\right)<0$ and $\beta=$ $\frac{1}{5}\left(1+2 \cos \left(\frac{2 \pi}{5}\right)\right)>0$, so that $\mathbf{C}_{\mathbf{x}} \nsupseteq \mathbf{0}$ and $-\mathbf{C}_{\mathbf{x}} \nsupseteq \mathbf{0}$. But also $\mathbf{B}_{\mathbf{x}}^{m} \nsupseteq \mathbf{0}$ since $\mathbf{C}_{\mathbf{x}}=\mathbf{C}_{\mathbf{x}}^{\top}=\mathbf{C}_{\mathbf{x}}^{m}=\mathbf{B}_{\mathbf{x}}^{m}$ for all $m \in \mathbb{N}$.

So for membership in \mathcal{C}_{n}^{\prime}, we have the following equivalence.
Corollary 2.4. Let $n \geq 2$ and $\mathbf{x} \in \mathbb{R}^{n}$. Then the following are equivalent.
(i) $\mathrm{x} \in \mathcal{C}_{n}^{\prime}$,
(ii) $\exists m \in \mathbb{N}: \mathbf{B}_{\mathbf{x}}^{m}>\mathbf{0}$,
(iii) $\exists m_{0} \in \mathbb{N} \forall m \geq m_{0}: \mathbf{B}_{\mathbf{x}}^{m}>\mathbf{0}$.

Proof. (ii) $\Rightarrow(\mathrm{i})$ is Theorem 2.1 b), (i) \Rightarrow (iii) is Theorem 2.2 b), and (iii) \Rightarrow (ii) is obvious.

3. COMPLEX ENTRIES

The case $\mathbf{x} \in \mathbb{C}^{n}$ is only slightly different. When we refer to \mathcal{C}_{n} or \mathcal{C}_{n}^{\prime} now, we mean the corresponding subsets of \mathbb{C}^{n}. In a complex version of Lemma 1.1 a) it would be enough to have all entries of \mathbf{x} of the same phase, i.e. on the same ray $\{r z: r \geq 0\}$ with some $z \in \mathbb{C}$. But for Lemma 1.2 a), that ray would again have to be the nonnegative real axis, because the main diagonal entries of $\mathbf{B}_{\mathbf{x}}:=\mathbf{C}_{\mathbf{x}}^{*} \mathbf{C}_{\mathbf{x}}$ are always there. The other entries of $\mathbf{B}_{\mathbf{x}}$ or $\mathbf{B}_{\mathbf{x}}^{m}$ need not even be real, let alone nonnegative or positive.

However, the proof of Theorem 2.2 shows that the entries of $\mathbf{B}_{\mathbf{x}}^{m}$ are in a certain neighborhood of the positive half axis if $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$ (also for the complex version) and m is sufficiently large. On the other hand, by the continuity of each function value $c(t)$ with respect to \mathbf{x}, one can generalize Lemma 1.1 to an appropriate neighborhood of the positive half axis:

Lemma 3.1. If $n \geq 2$ and $\mathbf{x}=\left(x_{0}, \ldots, x_{n-1}\right) \in \mathbb{C}^{n}$ is such that at least two adjacent entries of \mathbf{x} are nonzero and all phases are close to zero, precisely, each

$$
\begin{equation*}
\varphi_{k}:=\arg x_{k} \in(-\pi, \pi] \quad \text { is subject to } \quad\left|\varphi_{k}\right|<\frac{\pi}{2 n} \tag{3.1}
\end{equation*}
$$

then $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$.
Proof. We start with n general complex numbers $z_{0}, \ldots, z_{n-1} \in \mathbb{C}$ and put $\psi_{k}:=\arg z_{k}$, which we put to zero if $z_{k}=0$. Then the following "generalized law of cosines" is easily verified.

$$
\begin{align*}
\left|z_{0}+\ldots+z_{n-1}\right|^{2} & =\left(z_{0}+\ldots+z_{n-1}\right) \overline{\left(z_{0}+\ldots+z_{n-1}\right)}=\sum_{j, k=0}^{n-1} z_{j} \overline{z_{k}} \\
& =\sum_{j=0}^{n-1}\left|z_{j}\right|^{2}+2 \sum_{\substack{j, k=0 \\
j<k}}^{n-1} \operatorname{Re}\left(z_{j} \overline{z_{k}}\right) \tag{3.2}\\
& =\sum_{j=0}^{n-1}\left|z_{j}\right|^{2}+2 \sum_{\substack{j, k=0 \\
j<k}}^{n-1}\left|z_{j}\right|\left|z_{k}\right| \cos \left(\psi_{j}-\psi_{k}\right) .
\end{align*}
$$

Putting $z_{k}:=x_{k}$ from above, we have $\psi_{k}=\varphi_{k}$ and hence

$$
\begin{align*}
|c(1)|^{2} & =\left|x_{0}+\ldots+x_{n-1}\right|^{2} \\
& \stackrel{(3.2)}{=} \sum_{j=0}^{n-1}\left|x_{j}\right|^{2}+2 \sum_{\substack{j, k=0 \\
j<k}}^{n-1}\left|x_{j}\right|\left|x_{k}\right| \cos \left(\varphi_{j}-\varphi_{k}\right) . \tag{3.3}
\end{align*}
$$

Now take $t=\omega^{\ell} \in \mathbb{T}_{n} \backslash\{1\}$ with some $\ell \in\{1, \ldots, n-1\}$ and put $z_{k}:=x_{k} t^{k}$ in (3.2). Then $\psi_{k}=\arg \left(x_{k} t^{k}\right)=\arg x_{k}+k \arg t=\varphi_{k}+k \ell \vartheta$ with $\vartheta:=\arg \omega=\frac{2 \pi}{n}$. Plugging this into (3.2), we get

$$
\begin{align*}
|c(t)|^{2} & =\left|x_{0} t^{0}+\ldots+x_{n-1} t^{n-1}\right|^{2} \\
& \stackrel{(3.2)}{=} \sum_{j=0}^{n-1}\left|x_{j}\right|^{2}+2 \sum_{\substack{j, k=0 \\
j<k}}^{n-1}\left|x_{j}\right|\left|x_{k}\right| \cos \left(\varphi_{j}-\varphi_{k}+(j-k) \ell \vartheta\right) . \tag{3.4}
\end{align*}
$$

By our assumption (3.1), all differences $\varphi_{j}-\varphi_{k}$ are in the interval $\left(-\frac{\pi}{n}, \frac{\pi}{n}\right)=: I_{n}$. Since the length of I_{n} is $\vartheta=\frac{2 \pi}{n}$,

$$
\varphi_{j}-\varphi_{k}+(j-k) \ell \vartheta \quad\left\{\begin{array}{ll}
=\varphi_{j}-\varphi_{k}, & \text { if }(j-k) \ell \in n \mathbb{Z}, \\
\notin I_{n}, & \text { otherwise },
\end{array}\right\} \quad \text { both modulo } 2 \pi
$$

Moreover, $\cos x<\cos y$ whenever $x \notin I_{n}$ and $y \in I_{n}$ (modulo 2π). Consequently, all cosines in (3.3) are larger than or equal to the corresponding cosines in (3.4). So $|c(1)| \geq|c(t)|$.

For our two adjacent j, k with x_{j} and x_{k} nonzero, we have $j-k=-1$ and hence $(j-k) \ell \notin n \mathbb{Z}$, so that the corresponding term in (3.3) is strictly larger than in (3.4). Hence, $|c(1)|>|c(t)|$.

So it is already enough for $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$ that each entry of \mathbf{x} is in a certain cone around the positive real half axis. By the same arguments as in the real case, one can look at a power of $\mathbf{B}_{\mathbf{x}}:=\mathbf{C}_{\mathbf{x}}^{*} \mathbf{C}_{\mathbf{x}}$, which is again a circulant matrix, and check whether the entries of its first (or any) row satisfy (3.1).

Theorem 3.2. Let $n \geq 2$ and $\mathbf{x} \in \mathbb{C}^{n}$. Then the following are equivalent.
(i) $\mathrm{x} \in \mathcal{C}_{n}^{\prime}$,
(ii) $\exists m \in \mathbb{N}$: at least two adjacent entries of the first row of $\mathbf{B}_{\mathbf{x}}^{m}$ are nonzero and satisfy (3.1),
(iii) $\exists m \in \mathbb{N}$: all entries of the first row of $\mathbf{B}_{\mathbf{x}}^{m}$ are nonzero and satisfy (3.1),
(iv) $\exists m_{0} \in \mathbb{N} \forall m \geq m_{0}$: all entries of the first row of $\mathbf{B}_{\mathbf{x}}^{m}$ are nonzero and satisfy (3.1).

Proof. The implications (iv) \Rightarrow (iii) \Rightarrow (ii) are obvious. It remains to check (ii) $\Rightarrow(\mathrm{i}) \Rightarrow$ (iv).
(ii) \Rightarrow (i) Let $m \in \mathbb{N}$ be as in (ii) and denote the circulant matrix $\mathbf{B}_{\mathbf{x}}^{m}$ by $\mathbf{C}_{\mathbf{y}}$. By Lemma 3.1, $\mathbf{y} \in \mathcal{C}_{n}^{\prime}$, i.e. the symbol b of $\mathbf{B}_{\mathbf{x}}^{m}$ has its maximum at 1 and only there. Arguing as in the proofs of Lemma 1.2 and Theorem 2.1, the same holds for the symbol c of $\mathbf{C}_{\mathbf{x}}$, so that $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$.
(i) \Rightarrow (iv) Let $\mathbf{x} \in \mathcal{C}_{n}^{\prime}$. Following the proof of Theorem 2.2 up to (2.2), we see that, for all entries of $\mathbf{B}_{\mathbf{x}}^{m}$, let us denote them by $b_{j k}^{(m)}$, we have the following limits as $m \rightarrow \infty$,

$$
\frac{b_{j k}^{(m)}}{\left\|\mathbf{B}_{\mathbf{x}}^{m}\right\|} \rightarrow \frac{1}{n}, \quad \text { so that } \quad \frac{\left|b_{j k}^{(m)}\right|}{\left\|\mathbf{B}_{\mathbf{x}}^{m}\right\|} \rightarrow\left|\frac{1}{n}\right|=\frac{1}{n}
$$

and hence

$$
\frac{b_{j k}^{(m)}}{\left|b_{j k}^{(m)}\right|}=\frac{b_{j k}^{(m)}}{\left\|\mathbf{B}_{\mathbf{x}}^{m}\right\|} \frac{\left\|\mathbf{B}_{\mathbf{x}}^{m}\right\|}{\left|b_{j k}^{(m)}\right|} \rightarrow \frac{1}{n} \cdot n=1,
$$

showing that $\arg b_{j k}^{(m)} \rightarrow 0$. It follows that, for all sufficiently large m, all entries of $\mathbf{B}_{\mathbf{x}}^{m}$ are nonzero and subject to (3.1). This clearly implies (iv).

4. CONCLUSION

Theorems 2.1 and 2.2 are clearly not meant to give efficient ways of computing the spectral norm of a generic real circulant matrix - one cannot beat formula (1.1) in terms of the computational cost. Rather than that, our theorems connect two apparently different questions to each other:
(i) whether $\left\|\mathbf{C}_{\mathbf{x}}\right\|$ equals $\left|x_{0}+\ldots+x_{n-1}\right|$, and
(ii) eventual positivity of the semigroup $\left(\mathbf{B}_{\mathbf{x}}^{m}\right)_{m=0}^{\infty}$.

In the complex case, one has the same results but instead of being real and positive, the matrix entries of $\mathbf{B}_{\mathbf{x}}^{m}$ only have to belong to a certain cone (3.1) around the positive half axis.

REFERENCES

[1] P.J. Davis, Circulant Matrices, Wiley, 1979.
[2] J.K. Merikoski, P. Haukkanen, M. Mattila, T. Tossavainen, The spectral norm of a Horadam circulant matrix, JP Journal of Algebra, Number Theory and Applications, to appear.
[3] J.K. Merikoski, P. Haukkanen, M. Mattila, T. Tossavainen, On the spectral and Frobenius norm of a generalized Fibonacci r-circulant matrix, Special Matrices 6 (2018), 23-36.

Marko Lindner
lindner@tuhh.de

Techn. Univ. Hamburg (TUHH)
Institut Mathematik
D-21073 Hamburg, Germany
Received: March 28, 2018.
Revised: April 4, 2018.
Accepted: April 4, 2018.

[^0]: ${ }^{1)}$ using a Monte Carlo simulation with one million equally distributed points in the unit ball

