CIRCULANT MATRICES: NORM, POWERS, AND POSITIVITY

Marko Lindner

Communicated by P.A. Cojuhari

Abstract. In their recent paper "The spectral norm of a Horadam circulant matrix", Merikoski, Haukkanen, Mattila and Tossavainen study under which conditions the spectral norm of a general real circulant matrix \mathbf{C} equals the modulus of its row/column sum. We improve on their sufficient condition until we have a necessary one. Our results connect the above problem to positivity of sufficiently high powers of the matrix $\mathbf{C}^{\mathsf{T}}\mathbf{C}$. We then generalize the result to complex circulant matrices.

Keywords: spectral norm, circulant matrix, eventually positive semigroups.

Mathematics Subject Classification: 15A60, 15B05, 15B48.

1. INTRODUCTION AND PRELIMINARIES

For $n \in \mathbb{N}$ and $\mathbf{x} = (x_0, \dots, x_{n-1}) \in \mathbb{R}^n$, look at the circulant matrix

$$\mathbf{C}_{\mathbf{x}} := \begin{pmatrix} x_0 & x_1 & \cdots & x_{n-1} \\ x_{n-1} & x_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & x_1 \\ x_1 & \cdots & x_{n-1} & x_0 \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

Motivated by studies of so-called Horadam or Fibonacci circulant matrices, the authors of [2,3] ask in [2] under which conditions the spectral norm of $\mathbf{C}_{\mathbf{x}}$ equals $|x_0 + x_1 + \dots + x_{n-1}|$. We give a sufficient and a necessary condition. Both have to do with the positivity of powers of $\mathbf{C}_{\mathbf{x}}^{\mathsf{T}}\mathbf{C}_{\mathbf{x}}$.

If $\mathbf{R} := \mathbf{C}_{(0,1,0,\dots,0)}$ denotes the cyclic backward shift $\mathbf{R} : (u_1,\dots,u_n) \mapsto (u_2,\dots,u_n,u_1)$, then

$$\mathbf{C}_{\mathbf{x}} = x_0 \mathbf{R}^0 + x_1 \mathbf{R}^1 + \ldots + x_{n-1} \mathbf{R}^{n-1} = c(\mathbf{R})$$
 with $c(t) := x_0 t^0 + x_1 t^1 + \ldots + x_{n-1} t^{n-1}$.

The polynomial c is called the symbol of C_x . Most of the time, we understand c as a function on

$$\mathbb{T}_n := \{ t \in \mathbb{C} : t^n = 1 \} = \{ \omega^0, \omega^1, \dots, \omega^{n-1} \} \quad \text{with} \quad \omega := \exp(\frac{2\pi}{n} \mathbf{i}).$$

It is easy to see that **R** diagonalizes as $\mathbf{R} = \mathbf{F}\mathbf{D}\mathbf{F}^*$, where $\mathbf{D} = \mathrm{diag}(\omega^0, \dots, \omega^{n-1})$ and **F** is the so-called Fourier matrix $\frac{1}{\sqrt{n}}(\omega^{jk})_{j,k=0}^{n-1}$. Note that **F** is unitary, so that $\mathbf{F}^{-1} = \mathbf{F}^*$. Consequently,

$$\mathbf{C}_{\mathbf{x}} = c(\mathbf{R}) = c(\mathbf{F}\mathbf{D}\mathbf{F}^*) = \mathbf{F}c(\mathbf{D})\mathbf{F}^* = \mathbf{F}\operatorname{diag}(c(\omega^0), \dots, c(\omega^{n-1}))\mathbf{F}^* = \mathbf{F}\mathbf{D}_{\mathbf{x}}\mathbf{F}^*$$

with $\mathbf{D}_{\mathbf{x}} := \operatorname{diag}(c(\omega^0), \dots, c(\omega^{n-1}))$. Since **F** is an isometry of \mathbb{C}^n with the Euclidean

$$\|\mathbf{C}_{\mathbf{x}}\| = \|\mathbf{F}\mathbf{D}_{\mathbf{x}}\mathbf{F}^*\| = \|\mathbf{D}_{\mathbf{x}}\| = \max(|c(\omega^0)|, |c(\omega^1)|, \dots, |c(\omega^{n-1})|) =: \|c\|_{\infty}, \quad (1.1)$$

where $\|\cdot\|$ denotes the spectral norm of a matrix; it is the matrix norm that is induced by the Euclidean norm. Of course, all of this is standard [1]. The Fourier transform F turns the convolution $C_{\mathbf{x}}$ into a multiplication $D_{\mathbf{x}}$. We are just fixing notations here. The question of [2] is essentially, under which conditions

$$\|\mathbf{C}_{\mathbf{x}}\| = \|c\|_{\infty} \text{ equals } |x_0 + x_1 + \dots + x_{n-1}| = |c(1)| = |c(\omega^0)|.$$
 (1.2)

So let

$$C_n := \{ \mathbf{x} = (x_0, \dots, x_{n-1}) \in \mathbb{R}^n : ||\mathbf{C}_{\mathbf{x}}|| = |x_0 + x_1 + \dots + x_{n-1}| \}.$$

Looking at (1.2), we see that

$$\mathbf{x} \in \mathcal{C}_n \iff \|c\|_{\infty} = |c(1)|, \text{ i.e. } |c(\cdot)| \text{ assumes its maximum on } \mathbb{T}_n \text{ at } t = 1 = \omega^0.$$

We will work with the latter condition in what follows. We will also study the following subset of C_n if $n \geq 2$. Let

$$\mathcal{C}'_n := \left\{ \mathbf{x} \in \mathcal{C}_n : \max_{t \in \mathbb{T}_n \setminus \{1\}} |c(t)| < |c(1)| = ||c||_{\infty} \right\} \subset \mathcal{C}_n.$$

While, for $\mathbf{x} \in \mathcal{C}_n$, the maximum of $|c(\cdot)|$ in \mathbb{T}_n is attained at t=1, for $\mathbf{x} \in \mathcal{C}'_n$ it is only attained at t=1, so that C_x has a spectral gap between the two largest (in modulus) eigenvalues. We start with a simple sufficient condition for membership in \mathcal{C}_n and \mathcal{C}'_n , respectively. Here we write $\mathbf{x} \geq \mathbf{0}$ ($\mathbf{x} > \mathbf{0}$) or $\mathbf{M} \geq \mathbf{0}$ ($\mathbf{M} > \mathbf{0}$) if each entry of, respectively, the vector \mathbf{x} or the matrix \mathbf{M} is nonnegative (positive).

Lemma 1.1. Let $n \geq 2$ and $\mathbf{x} \in \mathbb{R}^n$

- a) If $\mathbf{x} \geq \mathbf{0}$ or $-\mathbf{x} \geq \mathbf{0}$ (i.e. $\pm \mathbf{C_x} \geq \mathbf{0}$) then $\mathbf{x} \in \mathcal{C}_n$. (This is [2, Corollary 2].) b) If $\mathbf{x} > \mathbf{0}$ or $-\mathbf{x} > \mathbf{0}$ (i.e. $\pm \mathbf{C_x} > \mathbf{0}$) then $\mathbf{x} \in \mathcal{C}'_n$.

Proof. a) By triangle inequality, every |c(t)| with $t \in \mathbb{T}_n$ is bounded as follows

$$|c(t)| = |x_0 + x_1 t^1 + \dots + x_{n-1} t^{n-1}| \le |x_0| + |x_1| + \dots + |x_{n-1}|$$
 since $|t| = 1$.

But this upper bound, and hence the maximum $||c||_{\infty}$, is attained by $|c(1)| = |x_0 + \dots + x_{n-1}|$ as soon as all x_k have the same sign, $\mathbf{x} \geq \mathbf{0}$ or $-\mathbf{x} \geq \mathbf{0}$.

b) The statement can be derived by the Perron-Frobenius theorem but here is a more elementary proof. Let $\mathbf{x} > \mathbf{0}$. (The argument is similar for $-\mathbf{x} > \mathbf{0}$.) By a), we have $|c(1)| = ||c||_{\infty}$. For every $t \in \mathbb{T}_n \setminus \{1\}$, it holds $|x_0 + x_1 t| < |x_0| + |x_1 t|$ since $x_0, x_1 > 0$ and 1 and t have different directions in \mathbb{C} . Consequently, noting that |t| = 1,

$$|c(t)| = |x_0 + x_1 t^1 + \dots + x_{n-1} t^{n-1}| \le \underbrace{|x_0 + x_1 t|}_{<|x_0| + |x_1 t|} + |x_2 t^2| + \dots + |x_{n-1} t^{n-1}|$$

$$< |x_0| + |x_1| + |x_2| + \dots + |x_{n-1}| = x_0 + \dots + x_{n-1} = c(1) = |c(1)| = ||c||_{\infty}. \square$$

This sufficient condition for membership in C_n or C'_n seems quite generous. [2] suggests the following improvement. Put

$$\mathbf{B}_{\mathbf{x}} := \mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}} = \mathbf{C}_{\mathbf{x}}^{*} \mathbf{C}_{\mathbf{x}} = (\mathbf{F} \mathbf{D}_{\mathbf{x}} \mathbf{F}^{*})^{*} (\mathbf{F} \mathbf{D}_{\mathbf{x}} \mathbf{F}^{*}) = \mathbf{F} \mathbf{D}_{\mathbf{x}}^{*} \mathbf{D}_{\mathbf{x}} \mathbf{F}^{*} = \mathbf{F} \mathbf{A}_{\mathbf{x}} \mathbf{F}^{*}$$
(1.3)

with

$$\mathbf{A}_{\mathbf{x}} := \mathbf{D}_{\mathbf{x}}^* \mathbf{D}_{\mathbf{x}} = \operatorname{diag}(b(\omega^0), \dots, b(\omega^{n-1})),$$

where

$$b(t) := \overline{c(t)}c(t) = |c(t)|^2$$
 for all $t \in \mathbb{T}_n$,

so that

$$||b||_{\infty} := \max_{t \in \mathbb{T}_n} |b(t)| = \max_{t \in \mathbb{T}_n} |c(t)|^2 = ||c||_{\infty}^2.$$

Then $\mathbf{B}_{\mathbf{x}}$ is again a real circulant matrix. Applying Lemma 1.1 to $\mathbf{B}_{\mathbf{x}}$ (in place of $\mathbf{C}_{\mathbf{x}}$), we get the following result.

Lemma 1.2. Let $n \geq 2$, $\mathbf{x} \in \mathbb{R}^n$ and put $\mathbf{B}_{\mathbf{x}} := \mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}}$.

- a) If $\mathbf{B}_{\mathbf{x}} \geq \mathbf{0}$ then $\mathbf{x} \in \mathcal{C}_n$. (This is [2, Theorem 4].)
- b) If $\mathbf{B}_{\mathbf{x}} > \mathbf{0}$ then $\mathbf{x} \in \mathcal{C}'_n$.

Proof. Recall that the symbol b of $\mathbf{B}_{\mathbf{x}}$ is related to the symbol c of $\mathbf{C}_{\mathbf{x}}$ by $b(t) = |c(t)|^2$ for all $t \in \mathbb{T}_n$. So b assumes its maximum at the same point(s) as $|c(\cdot)|$ does. For a), by Lemma 1.1 a),

$$\mathbf{B}_{\mathbf{x}} \geq \mathbf{0} \quad \Rightarrow \|b\|_{\infty} = |b(1)| \Rightarrow \|c\|_{\infty}^2 = |c(1)|^2 \Rightarrow \|c\|_{\infty} = |c(1)| \Rightarrow \mathbf{x} \in \mathcal{C}_n.$$

b) By Lemma 1.1 b), positivity $\mathbf{B}_{\mathbf{x}} > \mathbf{0}$ implies that $|b(t)| < \|b\|_{\infty}$ for all $t \in \mathbb{T}_n \setminus \{1\}$. But then also $|c(t)| = |b(t)|^{1/2} < \|b\|_{\infty}^{1/2} = \|c\|_{\infty}$ for all $t \in \mathbb{T}_n \setminus \{1\}$. So $\mathbf{x} \in \mathcal{C}'_n$. \square

Note that the case $-\mathbf{B_x} \geq \mathbf{0}$ is impossible (unless $\mathbf{x} = \mathbf{0}$, in which case $\mathbf{B_x} = \mathbf{0}$) since the main diagonal of $\mathbf{B_x}$ carries the entry $\|\mathbf{x}\|_2^2$.

2. ITERATING THE ARGUMENT UNTIL SUFFICIENT BECOMES NECESSARY

Looking at Lemmas 1.1 and 1.2, the following questions seem natural:

- (Q1) Is the new condition $\mathbf{C}_{\mathbf{x}}^{\top}\mathbf{C}_{\mathbf{x}} \geq \mathbf{0}$ substantially weaker than the old condition $\pm C_x \ge 0$?
- (Q2) Do we get a chain of increasingly weaker sufficient conditions if we repeat the argument?
- (Q3) Does that chain end in a necessary condition?

Let us address those questions, starting with (Q1): It is easy to see that for $n \in \{1,2\}$, the two conditions are equivalent but for $n \geq 3$ they differ. Table 1 below indicates that the quotient of their probabilities grows as n grows. As an example for n = 3, look at $\mathbf{x} = (1, -2, -3)$, where

$$\mathbf{C}_{\mathbf{x}} = \begin{pmatrix} 1 & -2 & -3 \\ -3 & 1 & -2 \\ -2 & -3 & 1 \end{pmatrix} \not \geq \mathbf{0}, \quad -\mathbf{C}_{\mathbf{x}} \not \geq \mathbf{0} \quad \text{but} \quad \mathbf{B}_{\mathbf{x}} := \mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}} = \begin{pmatrix} 14 & 1 & 1 \\ 1 & 14 & 1 \\ 1 & 1 & 14 \end{pmatrix} \geq \mathbf{0}.$$

So Lemma 1.1 is not strong enough to show $\mathbf{x} \in \mathcal{C}_3$, i.e. $\|\mathbf{C}_{\mathbf{x}}\| = |1 - 2 - 3| = 4$, but

About (Q2): With $\mathbf{B}_{\mathbf{x}} = \mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}}$, let us now look at $\mathbf{B}_{\mathbf{x}}^{\top} \mathbf{B}_{\mathbf{x}}$. But since $\mathbf{B}_{\mathbf{x}}^{\top} = \mathbf{B}_{\mathbf{x}}$, one has $\mathbf{B}_{\mathbf{x}}^{\top}\mathbf{B}_{\mathbf{x}} = \mathbf{B}_{\mathbf{x}}^{2}$. This is still a circulant, to which we can apply Lemma 1.1. Then one can again multiply $\mathbf{B}_{\mathbf{x}}^2$ with its transpose (itself) or just with $\mathbf{B}_{\mathbf{x}}$ and continue

Theorem 2.1. Let $n \geq 2$, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{B}_{\mathbf{x}} = \mathbf{C}_{\mathbf{x}}^{\top} \mathbf{C}_{\mathbf{x}}$.

- a) If $\mathbf{B}_{\mathbf{x}}^{m} \geq \mathbf{0}$ for some $m \in \mathbb{N}$ then $\mathbf{x} \in \mathcal{C}_{n}$. b) If $\mathbf{B}_{\mathbf{x}}^{m} > \mathbf{0}$ for some $m \in \mathbb{N}$ then $\mathbf{x} \in \mathcal{C}'_{n}$.

Proof. For every $m \in \mathbb{N}$, we have, by (1.3),

$$\mathbf{B}_{\mathbf{x}}^{m} = \mathbf{F} \, \mathbf{A}_{\mathbf{x}}^{m} \, \mathbf{F}^{*} = \mathbf{F} \, \underset{k=0}{\overset{n-1}{\text{diag}}} b(\omega^{k})^{m} \, \mathbf{F}^{*},$$
so that $\|\mathbf{B}_{\mathbf{x}}^{m}\| = \underset{k=0}{\overset{n-1}{\text{max}}} |b(\omega^{k})|^{m} = \|b\|_{\infty}^{m} = \|c\|_{\infty}^{2m}.$ (2.1)

So $\mathbf{B}_{\mathbf{x}}^m$ is a circulant matrix with symbol $t\mapsto b(t)^m=|c(t)|^{2m}$. It assumes its maximum at the same point(s) of \mathbb{T}_n as $|c(\cdot)|$ does. Now argue as in the proof of Lemma 1.2.

Looking at $m=2^0, 2^1, 2^2, \ldots$ and noting that $\mathbf{M}, \mathbf{N} \geq \mathbf{0}$ implies $\mathbf{M} \cdot \mathbf{N} \geq \mathbf{0}$,

$$\begin{array}{l} \pm \mathbf{C_x} \geq 0 \ \Rightarrow \ \mathbf{B_x} \geq \mathbf{0} \ \Rightarrow \ \mathbf{B_x^2} \geq \mathbf{0} \ \Rightarrow \ \mathbf{B_x^4} \geq \mathbf{0} \ \Rightarrow \ \mathbf{B_x^8} \geq \mathbf{0} \ \Rightarrow \ \cdots \ \Rightarrow \ \mathbf{x} \in \mathcal{C}_n, \\ \pm \mathbf{C_x} > 0 \ \Rightarrow \ \mathbf{B_x} > \mathbf{0} \ \Rightarrow \ \mathbf{B_x^2} > \mathbf{0} \ \Rightarrow \ \mathbf{B_x^4} > \mathbf{0} \ \Rightarrow \ \mathbf{B_x^8} > \mathbf{0} \ \Rightarrow \cdots \ \Rightarrow \ \mathbf{x} \in \mathcal{C}_n'. \end{array}$$

To illustrate that these are indeed chains of increasingly weaker conditions, let us approximately compute¹⁾ the portion of the unit ball in \mathbb{R}^n that satisfies the corresponding condition (see Table 1).

¹⁾ using a Monte Carlo simulation with one million equally distributed points in the unit ball

Table 1. An approximate computation of the portion of points $\mathbf{x} \in \mathbb{R}^n$ of the unit ball (note that all conditions are invariant under scaling of \mathbf{x}) that satisfy the corresponding condition in the header. Reading from left to right, every row seems to grow – in the limit – up to the portion of the ball that belongs to C'_n . This is a positive sign with respect to our question (Q3)

n	$\pm x > 0$	$B_x > 0$	$\mathbf{B}_{\mathbf{x}}^2 > 0$	$\mathbf{B}_{\mathbf{x}}^4 > 0$	$\mathbf{B}_{\mathbf{x}}^{8} > 0$	${f B}_{f x}^{16} > {f 0}$	${f B}_{f x}^{32} > {f 0}$		$\mathbf{x} \in \mathcal{C}'_n$
n=2	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%		50.0%
n=3	25.0%	42.3%	42.3%	42.3%	42.3%	42.3%	42.3%		42.3%
n=4	12.5%	25.0%	27.3%	28.9%	29.8%	30.3%	30.5%		30.8%
n=5	6.3%	23.2%	25.4%	27.1%	28.1%	28.6%	28.9%		29.2%
n=6	3.1%	16.7%	20.0%	21.9%	22.8%	23.1%	23.3%		23.5%
n=7	1.6%	14.7%	18.1%	20.4%	21.7%	22.4%	22.8%		23.2%
n=8	0.8%	10.4%	14.3%	16.8%	18.1%	18.8%	19.2%		19.5%
n=9	0.4%	10.3%	14.4%	17.0%	18.3%	18.9%	19.2%		19.5%
n = 10	0.2%	7.5%	11.6%	14.3%	15.7%	16.3%	16.6%		16.9%
							•		.
:	:	:	:	:	:	:	:		:
n = 20	2^{-19}	1.9%	5.2%	7.9%	9.4%	10.1%	10.4%		10.7%

Finally, we turn to our question (Q3) about necessary conditions for membership in C_n or C'_n . Nonnegativity / positivity of powers of $\mathbf{B}_{\mathbf{x}}$ is not necessary for membership in C_n (see Example 2.3 below). But, assuming a spectral gap, i.e. membership in C'_n , we get convergence of the power method and hence positivity of large powers of $\mathbf{B}_{\mathbf{x}}$ (due to the special structure of the corresponding eigenvector).

Theorem 2.2. If $\mathbf{x} \in \mathcal{C}'_n$ then there exists an $m_0 \in \mathbb{N}$ such that $\mathbf{B}^m_{\mathbf{x}} > \mathbf{0}$ for all $m > m_0$.

Proof. Let $\mathbf{x} \in \mathcal{C}'_n$ and abbreviate $|c(\omega^k)| =: c_k$ for $k = 0, \dots, n-1$. Then $||c||_{\infty} = c_0 > c_1, \dots, c_{n-1} \ge 0$. From (2.1) we conclude

$$\frac{\mathbf{B}_{\mathbf{x}}^{m}}{\|\mathbf{B}_{\mathbf{x}}^{m}\|} = \frac{1}{c_{0}^{2m}} \mathbf{F} \operatorname{diag}(c_{0}^{2m}, c_{1}^{2m}, \dots, c_{n-1}^{2m}) \mathbf{F}^{*} = \mathbf{F} \operatorname{diag}\left(1, \left(\frac{c_{1}}{c_{0}}\right)^{2m}, \dots, \left(\frac{c_{n-1}}{c_{0}}\right)^{2m}\right) \mathbf{F}^{*}$$

$$\rightarrow \mathbf{F} \operatorname{diag}(1, 0, \dots, 0) \mathbf{F}^{*} = \frac{1}{n} \begin{pmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{pmatrix} > \mathbf{0} \quad \text{as} \quad m \to \infty, \tag{2.2}$$

so that $\mathbf{B}_{\mathbf{x}}^m > \mathbf{0}$ for all sufficiently large $m \in \mathbb{N}$.

The argument in the proof of Theorem 2.2 does not work if $|c(\cdot)|$ attains its maximum in another or in more than one point on \mathbb{T}_n . The following example shows that, indeed, \mathcal{C}'_n cannot be replaced by \mathcal{C}_n in Theorem 2.2.

Example 2.3. Take n=5 and $\mathbf{C_x}:=\mathbf{F} \operatorname{diag}(1,0,1,1,0)\,\mathbf{F}^*$. The diagonal has its maximum in the first but also in the 3rd and 4th position, so that $\mathbf{x}\in\mathcal{C}_5\setminus\mathcal{C}_5'$. The first row of $\mathbf{C_x}$ is $\mathbf{x}=(\frac{3}{5},\alpha,\beta,\beta,\alpha)$ with $\alpha=\frac{1}{5}(1+2\cos(\frac{4\pi}{5}))<0$ and $\beta=\frac{1}{5}(1+2\cos(\frac{2\pi}{5}))>0$, so that $\mathbf{C_x}\not\geq\mathbf{0}$ and $-\mathbf{C_x}\not\geq\mathbf{0}$. But also $\mathbf{B_x^m}\not\geq\mathbf{0}$ since $\mathbf{C_x}=\mathbf{C_x^\top}=\mathbf{C_x^m}=\mathbf{B_x^m}$ for all $m\in\mathbb{N}$.

So for membership in \mathcal{C}'_n , we have the following equivalence.

Corollary 2.4. Let $n \geq 2$ and $\mathbf{x} \in \mathbb{R}^n$. Then the following are equivalent.

- (i) $\mathbf{x} \in \mathcal{C}'_n$, (ii) $\exists m \in \mathbb{N} : \mathbf{B}^m_{\mathbf{x}} > \mathbf{0}$,
- (iii) $\exists m_0 \in \mathbb{N} \ \forall \ m \geq m_0 : \mathbf{B}_{\mathbf{x}}^m > \mathbf{0}.$

Proof. (ii) \Rightarrow (i) is Theorem 2.1 b), (i) \Rightarrow (iii) is Theorem 2.2 b), and (iii) \Rightarrow (ii) is obvious.

3. COMPLEX ENTRIES

The case $\mathbf{x} \in \mathbb{C}^n$ is only slightly different. When we refer to \mathcal{C}_n or \mathcal{C}'_n now, we mean the corresponding subsets of \mathbb{C}^n . In a complex version of Lemma 1.1 a) it would be enough to have all entries of **x** of the same phase, i.e. on the same ray $\{rz: r \geq 0\}$ with some $z \in \mathbb{C}$. But for Lemma 1.2 a), that ray would again have to be the nonnegative real axis, because the main diagonal entries of $B_x := C_x^* C_x$ are always there. The other entries of $\mathbf{B}_{\mathbf{x}}$ or $\mathbf{B}_{\mathbf{x}}^m$ need not even be real, let alone nonnegative or positive.

However, the proof of Theorem 2.2 shows that the entries of $\mathbf{B}_{\mathbf{x}}^{m}$ are in a certain neighborhood of the positive half axis if $\mathbf{x} \in \mathcal{C}'_n$ (also for the complex version) and m is sufficiently large. On the other hand, by the continuity of each function value c(t)with respect to \mathbf{x} , one can generalize Lemma 1.1 to an appropriate neighborhood of the positive half axis:

Lemma 3.1. If $n \geq 2$ and $\mathbf{x} = (x_0, \dots, x_{n-1}) \in \mathbb{C}^n$ is such that at least two adjacent entries of \mathbf{x} are nonzero and all phases are close to zero, precisely, each

$$\varphi_k := \arg x_k \in (-\pi, \pi] \quad \text{is subject to} \quad |\varphi_k| < \frac{\pi}{2n},$$
(3.1)

then $\mathbf{x} \in \mathcal{C}'_n$.

Proof. We start with n general complex numbers $z_0, \ldots, z_{n-1} \in \mathbb{C}$ and put $\psi_k := \arg z_k$, which we put to zero if $z_k = 0$. Then the following "generalized law of cosines" is easily verified.

$$|z_{0} + \ldots + z_{n-1}|^{2} = (z_{0} + \ldots + z_{n-1})\overline{(z_{0} + \ldots + z_{n-1})} = \sum_{j,k=0}^{n-1} z_{j}\overline{z_{k}}$$

$$= \sum_{j=0}^{n-1} |z_{j}|^{2} + 2\sum_{\substack{j,k=0\\j < k}}^{n-1} \operatorname{Re}(z_{j}\overline{z_{k}})$$

$$= \sum_{j=0}^{n-1} |z_{j}|^{2} + 2\sum_{\substack{j,k=0\\j < k}}^{n-1} |z_{j}||z_{k}| \cos(\psi_{j} - \psi_{k}).$$
(3.2)

Putting $z_k := x_k$ from above, we have $\psi_k = \varphi_k$ and hence

$$|c(1)|^{2} = |x_{0} + \dots + x_{n-1}|^{2}$$

$$\stackrel{(3.2)}{=} \sum_{j=0}^{n-1} |x_{j}|^{2} + 2 \sum_{\substack{j,k=0\\j < k}}^{n-1} |x_{j}| |x_{k}| \cos(\varphi_{j} - \varphi_{k}).$$
(3.3)

Now take $t = \omega^{\ell} \in \mathbb{T}_n \setminus \{1\}$ with some $\ell \in \{1, \dots, n-1\}$ and put $z_k := x_k t^k$ in (3.2). Then $\psi_k = \arg(x_k t^k) = \arg x_k + k \arg t = \varphi_k + k\ell\vartheta$ with $\vartheta := \arg \omega = \frac{2\pi}{n}$. Plugging this into (3.2), we get

$$|c(t)|^{2} = |x_{0}t^{0} + \dots + x_{n-1}t^{n-1}|^{2}$$

$$\stackrel{(3.2)}{=} \sum_{j=0}^{n-1} |x_{j}|^{2} + 2 \sum_{\substack{j,k=0\\j < k}}^{n-1} |x_{j}||x_{k}| \cos(\varphi_{j} - \varphi_{k} + (j-k)\ell\vartheta).$$
(3.4)

By our assumption (3.1), all differences $\varphi_j - \varphi_k$ are in the interval $\left(-\frac{\pi}{n}, \frac{\pi}{n}\right) =: I_n$. Since the length of I_n is $\vartheta = \frac{2\pi}{n}$,

$$\varphi_j - \varphi_k + (j-k)\ell\vartheta \quad \left\{ \begin{array}{l} = \varphi_j - \varphi_k, & \text{if } (j-k)\ell \in n\mathbb{Z}, \\ \not\in I_n, & \text{otherwise,} \end{array} \right\} \quad \text{both modulo } 2\pi.$$

Moreover, $\cos x < \cos y$ whenever $x \notin I_n$ and $y \in I_n$ (modulo 2π). Consequently, all cosines in (3.3) are larger than or equal to the corresponding cosines in (3.4). So $|c(1)| \ge |c(t)|$.

For our two adjacent j, k with x_j and x_k nonzero, we have j - k = -1 and hence $(j - k)\ell \notin n\mathbb{Z}$, so that the corresponding term in (3.3) is strictly larger than in (3.4). Hence, |c(1)| > |c(t)|.

So it is already enough for $\mathbf{x} \in \mathcal{C}'_n$ that each entry of \mathbf{x} is in a certain cone around the positive real half axis. By the same arguments as in the real case, one can look at a power of $\mathbf{B}_{\mathbf{x}} := \mathbf{C}_{\mathbf{x}}^* \mathbf{C}_{\mathbf{x}}$, which is again a circulant matrix, and check whether the entries of its first (or any) row satisfy (3.1).

Theorem 3.2. Let $n \geq 2$ and $\mathbf{x} \in \mathbb{C}^n$. Then the following are equivalent.

- (i) $\mathbf{x} \in \mathcal{C}'_n$,
- (ii) $\exists m \in \mathbb{N} : at \ least \ two \ adjacent \ entries \ of \ the \ first \ row \ of \ \mathbf{B}_{\mathbf{x}}^m \ are \ nonzero \ and \ satisfy (3.1),$
- (iii) $\exists m \in \mathbb{N} : all \ entries \ of \ the \ first \ row \ of \ \mathbf{B}^m_{\mathbf{x}} \ are \ nonzero \ and \ satisfy \ (3.1),$
- (iv) $\exists m_0 \in \mathbb{N} \forall m \geq m_0$: all entries of the first row of $\mathbf{B}^m_{\mathbf{x}}$ are nonzero and satisfy (3.1).

Proof. The implications (iv) \Rightarrow (iii) \Rightarrow (ii) are obvious. It remains to check (ii) \Rightarrow (i) \Rightarrow (iv). (ii) \Rightarrow (i) Let $m \in \mathbb{N}$ be as in (ii) and denote the circulant matrix $\mathbf{B}_{\mathbf{x}}^m$ by $\mathbf{C}_{\mathbf{y}}$. By Lemma 3.1, $\mathbf{y} \in \mathcal{C}'_n$, i.e. the symbol b of $\mathbf{B}_{\mathbf{x}}^m$ has its maximum at 1 and only there. Arguing as in the proofs of Lemma 1.2 and Theorem 2.1, the same holds for the symbol

c of $\mathbf{C_x}$, so that $\mathbf{x} \in \mathcal{C}'_n$. (i) \Rightarrow (iv) Let $\mathbf{x} \in \mathcal{C}'_n$. Following the proof of Theorem 2.2 up to (2.2), we see that, for all entries of $\mathbf{B}^m_{\mathbf{x}}$, let us denote them by $b^{(m)}_{jk}$, we have the following limits as $m \to \infty$,

$$\frac{b_{jk}^{(m)}}{\|\mathbf{B}_{\mathbf{x}}^{m}\|} \to \frac{1}{n}, \quad \text{so that} \quad \frac{|b_{jk}^{(m)}|}{\|\mathbf{B}_{\mathbf{x}}^{m}\|} \to \left|\frac{1}{n}\right| = \frac{1}{n}$$

and hence

$$\frac{b_{jk}^{(m)}}{|b_{jk}^{(m)}|} = \frac{b_{jk}^{(m)}}{\|\mathbf{B}_{\mathbf{x}}^m\|} \frac{\|\mathbf{B}_{\mathbf{x}}^m\|}{|b_{jk}^{(m)}|} \to \frac{1}{n} \cdot n = 1,$$

showing that $\arg b_{jk}^{(m)} \to 0$. It follows that, for all sufficiently large m, all entries of $\mathbf{B}_{\mathbf{x}}^m$ are nonzero and subject to (3.1). This clearly implies (iv).

4. CONCLUSION

Theorems 2.1 and 2.2 are clearly not meant to give efficient ways of computing the spectral norm of a generic real circulant matrix – one cannot beat formula (1.1) in terms of the computational cost. Rather than that, our theorems connect two apparently different questions to each other:

- (i) whether $\|\mathbf{C}_{\mathbf{x}}\|$ equals $|x_0 + \ldots + x_{n-1}|$, and
- (ii) eventual positivity of the semigroup $(\mathbf{B}_{\mathbf{x}}^m)_{m=0}^{\infty}$.

In the complex case, one has the same results but instead of being real and positive, the matrix entries of $\mathbf{B}_{\mathbf{x}}^{m}$ only have to belong to a certain cone (3.1) around the positive half axis.

REFERENCES

- [1] P.J. Davis, Circulant Matrices, Wiley, 1979.
- [2] J.K. Merikoski, P. Haukkanen, M. Mattila, T. Tossavainen, *The spectral norm of a Horadam circulant matrix*, JP Journal of Algebra, Number Theory and Applications, to appear.
- [3] J.K. Merikoski, P. Haukkanen, M. Mattila, T. Tossavainen, On the spectral and Frobenius norm of a generalized Fibonacci r-circulant matrix, Special Matrices 6 (2018), 23–36.

 ${\bf Marko\ Lindner} \\ {\bf lindner@tuhh.de}$

Techn. Univ. Hamburg (TUHH) Institut Mathematik D-21073 Hamburg, Germany

Received: March 28, 2018. Revised: April 4, 2018. Accepted: April 4, 2018.