Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The positivity and asymptotic stability of the descriptor time-varying discrete-time linear systems are addressed. The Weierstrass-Kronecker theorem on the decomposition of the regular pencil is extended to the time-varying discrete-time descriptor linear systems. Using the extension necessary and sufficient conditions for the positivity of the systems are established. Sufficient conditions for asymptotic stability of the positive systems are presented. The effectiveness of the tests is demonstrated on the example.
Rocznik
Tom
Strony
83--89
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Bialystok University of Technology, Bialystok, Poland
Bibliografia
- 1 Czornik A., Newrat A., Niezabitowski M., Szyda A. 2012. On the Lyapunov and Bohl exponent of time‐varying discrete linear systems, 20th Mediterranean Conf. on Control and Automation (MED), Barcelona, 194‐197.
- 2 Czornik A., Niezabitowski M. 2013a. Lyapunov Exponent for Systems with Unbounded Coefficients, Dynamical Systems: an International Journal, vol. 28, no. 2, 140‐153.
- 3 Czornik A., Newrat A., Niezabitowski M. 2013, On the Lyapunov exponents of a class of the secon order discrete time linear systems with bounded perturbations, Dynamical Systems: an International Journal, vol. 28, no. 4, 473‐483.
- 4 Czornik A., Niezabitowski M. 2013b. On the stability of discrete time‐varying linear systems, Nonlinear Analysis: Hybrid Systems. vol. 9, 27‐41.
- 5 Czornik A., Niezabitowski M. 2013c. On the stability of Lyapunov exponents of discrete linear system, Proc. of European Control Conf., Zurich, 2210‐2213.
- 6 Czornik A., Klamka J., Niezabitowski M. 2014. On the set of Perron exponents of discrete linear systems, Proc. of World Congres of the 19th International Federation of Automatic Control, Kapsztad, 11740‐11742.
- 7 Farina L., Rinaldi S. 2000. Positive Linear Systems; Theory and Applications, J. Wiley, New York.
- 8 Kaczorek T. 2001. Positive 1D and 2D systems, Springer Verlag, London.
- 9 Kaczorek T. 2011. Positive linear systems consisting of n subsystems with different fractional orders, IEEE Trans.Circuits and Systems, vol. 58, no. 6, 1203‐1210.
- 10 Kaczorek T. 1998a. Positive descriptor discrete‐time linear systems, Problems of Nonlinear Analysis in Engineering Systems, vol. 1, no. 7, 38‐54.
- 11 Kaczorek T. 2015. Positive descriptor time‐varying discretetime linear systems, Proc. of Conf. ACIIDS, Bali, Indonesia, Springer‐Verlag.
- 12 Kaczorek T. 1997. Positive singular discrete time linear systems, Bull. Pol. Acad. Techn. Sci., vol. 45, no 4, 619‐631.
- 13 Kaczorek T. 2012. Selected Problems of Fractional Systems Theory, Springer‐Verlag, Berlin.
- 14 Kaczorek T. 1998b. Vectors and Matrices in Automation and Electrotechics, WNT, Warszawa (in Polish).
- 15 Rami M. A., Bokharaie V.S., Mason O., Wirth F.R. 2012. Extremel norms for positive linear inclusions, 20th International Symposium on Mathematical Theory of Networks and Systems, Melbourne.
- 16 Zhang H., Xie D., Zhang H., Wang G. 2014. Stability analysis for discrete‐time switched systems with unstable subsytems by a mode‐dependent average dwell time approach, ISA Transactions, vol. 53, 1081‐1086.
- 17 Zhang J., Han Z., Wu H., Hung J. 2014. Robust stabilization of discrete‐time positive switched systems with uncertainties and average dwell time switching, Circuits Syst, Signal Process., vol. 33, 71‐95.
- 18 Zhong Q., Cheng J., Zhong S. 2013. Finite‐time H∞ control of a switched discrete‐time system with average dwell time, Advances in Difference Equations, vol. 191.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d85c361a-04c5-43ec-a9a8-7c24ab289359