PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical evaluations of the bond behaviour between ribbed steel rebars and concrete

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of interfacial behaviour between ribbed steel rebars and concrete is a subject that has been widely studied. However, the definition of the bond stress distribution throughout the embedded length of the steel rebar is still controversial due to the difficulty of experimentally obtaining such distribution for a fixed load magnitude. It is also undeniable its relevancy for the better understanding and model reinforced concrete (RC) structures. So, the definition of the local behaviour between the ribbed steel rebar and concrete is critical to correctly simulate the adherence between both materials. In this matter, the local bond-slip models recommended in codes seem to satisfy some researchers while others suggest prudence in using them. Therefore, only choosing the correct bond-slip relationship may lead to exact interpretations and conclusions of the structural behaviour of a concrete structure but with the existing different bond-slip types, researchers can be misled inadvertently. This work aims to clarify some of these aspects by numerically simulating several pull-out tests under different conditions and checking their influence (or not) on real-scale specimens. After the validation of the numerical model through a proposed new bond-slip relationship, other parameters were studied also. Although the type of the bond-slip relationship influences the detachment of the steel rebar from the concrete, the yielding of the former material was found to be the main parameter that masks the differences in the behaviour of real-scale RC structures when different types of bond-slip relationships were considered in the numerical simulations.
Rocznik
Strony
art. no. e159, 2023
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Bibliografia
  • 1. Dybeł P, Furtak K. The effect of ribbed reinforcing bars location on their bond with high-performance concrete. Arch Civ Mech Eng. 2015;15:1070–7. https://doi.org/10.1016/j.acme.2015.03. 008.
  • 2. Zhou H, Lu J, Xv X, Dong B, Xing F. Effects of stirrup corro- sion on bond–slip performance of reinforcing steel in concrete: an experimental study. Constr Build Mater. 2015;93:257–66. https:// doi.org/10.1016/j.conbuildmat.2015.05.122.
  • 3. Dybeł P. Effect of bond conditions on local bond-slip relation- ships of ribbed bars in high performance self-compacting con- crete. Arch Civ Mech Eng. 2019;19(4):1399–408. https://doi.org/ 10.1016/j.acme.2019.09.003.
  • 4. Liu X, Liu Y, Wu T, Wei H. Bond-slip properties between lightweight aggregate concrete and rebar. Constr Build Mater. 2020;255: 119355. https://doi.org/10.1016/j.conbuildmat.2020. 119355.
  • 5. Zhang YB, Zheng SS, Dong LG, Zheng Y. Bond behavior of corroded reinforcements in concrete: an experimental study and hysteresis model. Arch Civ Mech Eng. 2023;23:95. https://doi. org/10.1007/s43452-022-00600-8.
  • 6. Turgut C, Jason L, Davenne L. Structural-scale modeling of the active confinement effect in the steel-concrete bond for reinforced concrete structures. Finite Elements Anal Design. 2020;172: 103386. https://doi.org/10.1016/j.finel.2020.103386.
  • 7. Miranda MP, Morsch IB, Brisotto DS, Bittencourt E, Carvalho EP. Steel-concrete bond behavior: an experimental and numerical study. Constr Build Mater. 2021;271: 121918. https://doi.org/10. 1016/j.conbuildmat.2020.121918.
  • 8. Zhang X, Yan X, Zhao A, Sha S, Zhu Z. Effect of time-varying transverse stresses on the bond-slip and global behavior of RC members under monotonic loads. J Build Eng. 2022;59: 105045. https://doi.org/10.1016/j.jobe.2022.105045.
  • 9. Chu SH, Kwan AKH. A new method for pull out test of rein- forcing bars in plain and fibre reinforced concrete. Eng Struct. 2018;164:82–91. https://doi.org/10.1016/j.engstruct.2018.02.080.
  • 10. ACI 408R-03. Bond and development of straight reinforcing bars in tension, ACI 408R-03. Farmington Hills: American Concrete Institute; 2012.
  • 11. Désir J-M, Romdhane MRB, Ulm F-J, Fairbairn EMR. Steel/con- crete interface: revisiting constitutive and numerical modelling. Comput Struct. 1999;71:489–503. https://doi.org/10.1016/S0045- 7949(98)00308-3.
  • 12. Jendele L, Červenka J. Finite element modelling of reinforcement with bond. Comput Struct. 2006;84:1780–91. https://doi.org/10. 1016/j.compstruc.2006.04.010.
  • 13. Brisotto DS, Bittencourt E, Bessa VMRA. Simulating bond fail- ure in reinforced concrete by a plasticity model. Comput Struct. 2012;106–107:81–90. https://doi.org/10.1016/j.compstruc.2012. 04.009.
  • 14. fib International Federation for Structural Concrete. fib model code for concrete structures 2010. Berlin: Ernst & Sohn; 2013.
  • 15. Tan R, Hendriks MAN, Kanstad T. Evaluation of current crack width calculation methods according to Eurocode 2 and fib Model Code. In: Hordijk D, Luković M, editors. High tech concrete: where technology and engineering meet. Cham: Springer; 2018.
  • 16. Beconcini ML, Croce P, Formichi P. Influence of bond-slip on the behaviour of reinforced concrete beam to column joints. In: Walraven, Stoelhorst, editors. Tailor made concrete structures. London: Taylor & Francis Group; 2008. p. 533–9.
  • 17. RILEM TC. RILEM recommendations for the testing and use of constructions materials. In: RC, vol. 6. 1994. p. 218–20.
  • 18. Wardeh G, Ghorbel E, Gomart H, Fiorio B. Experimental and analytical study of bond behavior between recycled aggre- gate concrete and steel bars using a pullout test. Struct Concr. 2017;2017:1–15. https://doi.org/10.1002/suco.201600155.
  • 19. Carvalho EP, Ferreira EG, Cunha JC, Rodrigues CS, Maia NS. Experimental investigation of steel-concrete bond for thin rein- forcing bars. Latin Am J Solids Struct. 2017;14:1932–51. https:// doi.org/10.1590/1679-78254116.
  • 20. Bompa DV, Elghazouli AY. Bond-slip response of deformed bars in rubberised concrete. Constr Build Mater. 2017;154:884–98. https://doi.org/10.1016/j.conbuildmat.2017.08.016.
  • 21. Abbas N, Yousaf M, Akbar M, Saeed MA, Huali P, Hussain Z. An experimental investigation and computer modeling of direct tension pullout test of reinforced concrete cylinder. Inventions. 2022;7(3):77. https://doi.org/10.3390/inventions7030077.
  • 22. Biscaia H, Soares S. Adherence prediction between ribbed steel rebars and concrete: a new perspective and comparison with codes. Structures. 2020;25:979–99. https:// doi. org/ 10. 1016/j. istruc.2020.04.019.
  • 23. Belarbi A, Richardson DN, Swenty MK, Taber LH. Effect of con- tamination on reinforcing bar-concrete bond. J Perform Constr Facil. 2010;24(3):206–14. https:// doi. org/ 10. 1061/ (ASCE) CF. 1943-5509.0000091.
  • 24. Carvalho T, Chastre C, Biscaia H, Paula R. Flexural behaviour of RC T-beams strengthened with different FRP materials. In: The Third International fib Congress and Exhibition “Think Globally, Build Locally”, Washington DC, 2010.
  • 25. Biscaia HC, Chastre C, Silva MAG. A smeared crack analysis of reinforced concrete T-beams strengthened with GFRP composites. Eng Struct. 2013;56:1346–61. https://doi.org/10.1016/j.engstruct. 2013.07.010.
  • 26. Biscaia HC, Chastre C, Silva MAG. Modelling GFRP-to-concrete joints with interface finite elements with rupture based on the Mohr–Coulomb criterion. Constr Build Mater. 2013;47:261–73. https://doi.org/10.1016/j.conbuildmat.2013.05.020.
  • 27. Franco N, Biscaia H, Chastre C. Experimental and numerical analyses of flexurally-strengthened concrete T-beams with stain- less steel. Eng Struct. 2018;172:981–96. https://doi.org/10.1016/j. engstruct.2018.06.077.
  • 28. Franco N, Chastre C, Biscaia H. Strengthening RC beams using stainless-steel continuous reinforcement embedded at ends. J Struct Eng. 2020;146(5):04020065. https:// doi. org/ 10. 1061/ (ASCE)ST.1943-541X.0002606.
  • 29. Bigaj AJ (1999) Structural dependence of rotation capacity of plastic hinges in RC beams and slabs. PhD Thesis, Delft Univer- sity of Technology, ISBN 90-407-1926-8.
  • 30. EN 10080. Steel for the reinforcement of concrete, 2005.
  • 31. Al-Shannag MJ, Charif A. Bond behavior of steel bars embedded in concretes made with natural lightweight aggregates. J King Saud Univ Eng Sci. 2017;29(4):365–72. https://doi.org/10.1016/j. jksues.2017.05.002.
  • 32. Paswan R, Rahman MR, Singh SK, Singh B. Bond behavior of reinforcing steel bar and geopolymer concrete. J Mater Civ Eng. 2020;32(7):04020167. https://doi.org/10.1061/(ASCE)MT.1943- 5533.0003237.
  • 33. Koulouris K, Apostolopoulos C. Study of the residual bond strength between corroded steel bars and concrete—a compari- son with the recommendations of Fib Model Code 2010. Metals. 2021;11(5):757. https://doi.org/10.3390/met11050757.
  • 34. Liang R, Huang Y, Xu Z. Experimental and analytical investiga- tion of bond behavior of deformed steel bar and ultra-high per- formance concrete. Buildings. 2022;12(4):460. https://doi.org/10. 3390/buildings12040460.
  • 35. Lee D, Lee SC, Yoo SW. Bond behavior of steel rebar embedded in cementitious composites containing polyvinyl alcohol (PVA) fibers and carbon nanotubes (CNTs). Polymers. 2023;15(4):884. https://doi.org/10.3390/polym15040884.
  • 36. Červenka V, Jendele L, Červenka J. ATENA Program documenta- tion (Part 1): theory. In: Červenka Consulting, Prague, 2022.
  • 37. Kannam P, Sarella VR. A study on validation of shear behaviour of steel fibrous SCC based on numerical modelling (ATENA). J Build Eng. 2018;19:69–79. https://doi.org/10.1016/j.jobe.2018. 05.003.
  • 38. Červenka V, Rimkus A, Gribniak V, Červenka J. Simulation of the crack width in reinforced concrete beams based on concrete fracture. Theor Appl Fract Mech. 2022;121: 103428. https://doi. org/10.1016/j.tafmec.2022.103428.
  • 39. Santarsiero G, Picciano V. Durability enhancement of half-joints in RC bridges through external prestressed tendons: The Musmeci Bridge’s case study. Case Stud Constr Mater. 2023;18: e01813. https://doi.org/10.1016/j.cscm.2022.e01813.
  • 40. Silva MAG, Biscaia HC. Effects of exposure to saline humid- ity on bond between GFRP and concrete. Compos Struct. 2010;93(1):216–24. https://doi.org/10.1016/j.compstruct.2010. 05.018.
  • 41. Biscaia H, Franco N, Chastre C. Stainless steel bonded to con- crete: An experimental assessment using the DIC technique. Int J Concr Struct Mater. 2018;12:1. https:// doi. org/ 10. 1186/ s40069-018-0229-8.
  • 42. EN 12390-3:2002. Testing hardened concrete—Part 3: compres- sive strength of test specimens. In: CEN—European Committee for Standardization; 2002.
  • 43. EN 10002-1:2001. Metallic materials—tensile testing—Part1: method of test at ambient temperature. In: CEN—European Com- mittee for Standardization; 2001.
  • 44. Shen D, Shi X, Ji Y, Yin F. Strain rate effect on bond stress-slip relationship between basalt fiber-reinforced polymer sheet and concrete. J Reinf Plast Compos. 2015;34(7):547–63. https://doi. org/10.1177/0731684415574539.
  • 45. Biscaia H, Almeida R, Zhang S, Canejo J. Experimental cali- bration of the bond-slip relationship of different CFRP-to-timber joints through digital image correlation measurements. Compos Part C Open Access. 2021;4: 100099. https://doi.org/10.1016/j. jcomc.2020.100099.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d859a490-313d-4979-9010-e2cfe06ca1c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.