PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution of Microplastics in Domestic Wastewater and Microplastics Removal Potential in Wastewater Treatment Plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microplastics in domestic wastewater are detrimental to living organisms and appear in a variety of sizes, colors, and shapes. The purpose of this study is to examine the distribution of microplastics in domestic wastewater, as well as the possibility for microplastic removal in wastewater treatment plants (WWTP). The sampling method used is SNI 6989.59:2008 concerning Wastewater Sampling Methods that Apply in Indonesia. To remove organic compounds in the sample, 0.05 M Fe (II) and 30% H2O2 solution were added by the digestion process at 75 °C for 30 minutes and cooled. Samples were filtered using Whattman GF/C filter paper with the help of a vacuum pump and dried. To identify the concentration, shape, size, color of microplastics, visual analysis was used with the help of a microscope using the zig-zag technique. The concentration of microplastics in domestic wastewater in Gampong Garot is 30.17 ± 0.75 particles/100 mL sample. The most commonly found microplastic size is 1,001–5,000 μm, while the dominant color is transparent. The forms of microplastic found in the samples were fiber, fragments and microbeads with a percentage of 65.20%, 23.16% and 11.64%, respectively. These microplastics come from local community activities such as washing clothes, bathing, washing dishes, and other activities. So, it is necessary to treat domestic wastewater using WWTP. Not only does it remove organic matter and nutrients, WWTP also has the potential of microplastics removal around 7–99% depending on the processing unit.
Rocznik
Strony
79--86
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Doctoral Student of Environmental Engineering, Institut Teknologi Bandung, Indonesia
autor
  • Doctoral Student of Environmental Engineering, Institut Teknologi Bandung, Indonesia
  • Department of Environmental Engineering, Universitas Islam Negeri Ar-Raniry Banda Aceh, Indonesia
  • Bachelor’s Degree of Environmental Engineering, Universitas Islam Negeri Ar-Raniry Banda Aceh, Indonesia
  • Department of Environmental Engineering, Universitas Serambi Mekah, Indonesia
Bibliografia
  • 1. Almroth, B.M.C., Astrom, L., Roslund, S., Petersson, H., Johansson, M., Persson, N.-K. 2017. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environmental Science and Pollution Research, 25, 1191–1199
  • 2. Alvin, C.B., Mendroza-Roca, J.A., Bes-Piẚ, A. 2019. Wastewater treatment plant as microplastics release source – Quantification and identification techniques. Journal of Environmental Management, 255.
  • 3. Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T.S., Thompson, R.C. 2011. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environmental Science & Technology, 45(21), 9175–9179.
  • 4. Carr, S.A., Liu, J., Tesoro, A.G. 2016. Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182.
  • 5. Cheung, P.K., Fok, L., 2016. Evidence of microbeads from personal care product con- taminating the sea. Marine Pollution Bulletin, 109, 582–585.
  • 6. Dewilda, Y., Aziz, R., Fauzi, M. 2019. Kajian Potensi Daur Ulang Sampah Makanan Restoran di Kota Padang. Jurnal Serambi Engineering, 2(2), 482–487.
  • 7. Dewilda, Y., Fauzi, M., Aziz, R., Utami, F.D. 2023. Analysis of Food Industry Waste Management based-on the Food Recovery Hierarchy and 3R Concept – A Case Study in Padang City, West Sumatra, Indonesia. Journal of Ecological Engineering, 24(7), 198–208.
  • 8. Dewilda, Y., Riansyah A., Fauzi, M. 2022. Kajian Pengelolaan Sampah Makanan Hotel di Kota Padang berdasarkan Food Recovery Hierarchy. Jurnal Serambi Engineering, 7(4), 3959–3970
  • 9. Dris, R., Johnny, G., Vincent, R., Mohamed, S., Nicolas, R., & Bruno, T. 2015. Microplastic contamination in an urban area: a case study in Greater Paris. Environmental Chemistry. 12(5), 592–599.
  • 10. Edo, C., Gonz´alez-Pleiter, M., Legan´es, F., Fern´andez-Pi˜nas, F., Rosal, R. 2020. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environmental Pollution, 259
  • 11. Falco, F. De, Pia, M., Gentile, G., Di, E., Escudero, R., Villalba, R., Mossotti, R., Montarsolo, A., Gavignano, S., Tonin, C., Avella, M. 2018. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environmental Pollution, 236, 916–925.
  • 12. Fauzi, M., Darnas, Y., Riansyah, A., Nanda, S. 2022. Perencanaan Sistem Pengelolaan Persampahan Kawasan Wisata Budaya Nagari Koto Gadang, Sumatra Barat. Jurnal Serambi Engineering, 7(4), 4024–4035
  • 13. Fauzi, M., Soewondo, P., Nur, A. 2023b. Treatment of Domestic Wastewater on Fixed-Bed Reactor Using Plastic Supporting Media – A Review. Ecological Engineering & Environmental Technology, 24(6), 276–281.
  • 14. Fauzi, M., Soewondo, P., Nur, A., Handajani, M., Tedjakusuma, T., Oginawati, K., Setiyawan, A. S. 2023. Performances of Polyethylene Terephthalate Plastic Bottles Waste as Supporting Media in Domestic Wastewater Treatment Using Aerobic Fixed-Film System. Journal of Ecological Engineering, 24(10).
  • 15. Free, C.M., O.P. Jensen, S.A. Mason, M. Eriksen, N. J. Williamson, B. Boldgiv. 2014. High-Levels of Microplastic Pollution in a Large, Remote, Mountain Lake. Marine Pollution Bulletin, 10(1016), 156–163.
  • 16. Gies, E.A., LeNoble, J.L., Nöel, M., Etemadifar, A., Bishay, F., Hall, E.R., Ross, P.S. 2018. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561.
  • 17. Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. 2012. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science & Technology, 46, 3060–3075.
  • 18. Hidayaturahman, H., Tae-Gwan Lee. 2019. A study in characteristics of microplastics in wastewater of South Korea; Identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin, 146, 696–702.
  • 19. Iyare, P.U., Ouki, S.K., dan Bond, T. 2020. Microplastics removal in wastewater treatment plants: a critical review. Environmental Science Water Research & Technology, 6, 2664–2675.
  • 20. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L. 2015. Plastic waste inputs from land into the ocean. Science, 347, 768–771.
  • 21. Kramm, J., Volker, C., Wagner, M. 2018. Superficial or substansial: why care about microplastics in the anthropocene?. Environmental Science & Technology, 56(6), 3336–3337
  • 22. Lares, M., Ncibi, M.C., Sillanpää, Markus, Sillanpää, Mika. 2018. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236–246.
  • 23. Law, K.L. 2017. Plastics in the marine environment. Annual Review of Marine Science, 9, 205–229.
  • 24. Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Zhou, W., Cao, C., Shi, H., Yang, X., He, D. 2018. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution 242, 855–862.
  • 25. Liu, X., Wenke Yuan, Mingxiao Di, Zhen li, Jun Wang. 2019. Transfer and fate of microplastcs during the conventional acrivated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 362, 176–182.
  • 26. Masiá P., Sol, D., Ardura, A., Laca, A., Borrell, Y.J., Dopico, E., Laca, A., Machado-Schiaffino, G., Díaz, M., Garcia-Vazquez, E. 2020. Bioremediation as a promising strategy for microplastics removal in wastewater treatment plants. Marine Pollution Bulletin, 156.
  • 27. Mintenig, S.M., Int-Veen, I., Löder, M.G.J., Primpke, S., Gerdts, G. 2017. Identification of microplastic in effluents of wastewater treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research, 108, 365-372.
  • 28. Murphy, F., Ewins, C., Carbonnier, F., Quinn, B. 2016. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50(11), 5800–5808.
  • 29. Nor M, Obbard Jp. 2014. Microplastics in Singapore’s Coastal Mangrove Ecosystems. Marine Pollution Bulletin, 79, 278–283.
  • 30. Nur, A., Fauzi, M., Soewondo, P., Setiyawan, A.S., Oginawati, K. 2022. The Occurrence of microplastics on the start-up process of anoxic biofilm batch reactor. Geomate, 22, 63–70.
  • 31. Revel, M., Châtel, A., Mouneyrac, C. 2018. Micro(nano)plastics: a threat to human health? Current Opinion in Environmental Science & Health, 1, 17–23.
  • 32. Setiyawan, A.S., Nur, A., Fauzi, M., Oginawati, K., Soewondo, P. 2023. Effect of Different Polymeric Materials on the Bacterial Attachment and Biofilm Formation in Anoxic Fixed-Bed Biofilm Reactors. Water, Air, and Soil Pollution, 234.
  • 33. Simon, M., van Alst, N dan Vollertsen, J. 2018. Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Research, 42, 1–9.
  • 34. Su, L., Xue, Y., Li, L., Yang, D., Kolandhasamy, P., Li, D., Shi, H. 2016. Microplastics in Taihu lake, China. Environmental Pollution, 216, 711–719
  • 35. Talvitie, J dan Heinonen, M. HELCOM BASE project 2012– 2014. 2014: Preliminary study on synthetic microfibers and particles at a municipal waste water treatment plant, Baltic Marine Environment Protection Commission (HELCOM), Helsinki.
  • 36. Talvitie, J., Heinonen, M., Pääkkönen, J.-P., Vahtera, E., Mikola, A., Setälä, O., Vahala, R., 2015. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72 (9), 1495-1504.
  • 37. Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., Koistinen, A. 2017. How well is microlitter purified from wastewater? A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164–172.
  • 38. Yang, Y.F., Hen, C.Y., Lu, T.H., Liao, C.M. 2019. Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. Journal Hazardous Mater, 366, 703–713.
  • 39. Zhang, X.L., Chen, J.X., Li, J. 2020: The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association. Chemosphere, 251.
  • 40. Ziajahromi, S., Neale, P.A., Rintoul, L., Leusch, F.D.L. 2017. Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93–99.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d84ea280-2eaf-4ce1-866e-5fbfd89c1db5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.