PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Tensile and Stiffness Properties of Composite Yarns with Different Parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie właściwości wytrzymałościowych i sztywności przędz kompozytowych o różnych parametrach
Języki publikacji
EN
Abstrakty
EN
In this experimental study, we investigated the effects of core yarn diameter and cover yarn type on the mechanical properties of composite yarns produced using a hollow spindle twisting machine according to the method of covering. Composite yarns containing stainless steel (SS) metal wires with diameters of 50 μm and 100 μm were produced with seven different cover yarns varying in their raw material and structure. These cover yarns were as follows: polypropylene, cotton, core-spun polyester/cotton, continuous filament polyester, continuous filament polyamide 6.6, core-spun polyester/polyester, and polyester cut fibre yarns. The mechanical properties measured were tensile behaviour and stiffness. According to the findings of the statistical analyses performed using the experimental values, the core yarn diameter, cover yarn type and the interactions of these factors were all significant factors affecting the tenacity, elongation at break, work of rupture and stiffness properties of the composite yarns. Composite yarns containing continuous filament polyamide 6.6 cover yarn showed higher tenacity values, while the maximum elongation at break was obtained for the composite yarns containing continuous filament polyester cover yarn. Both polyester and polyamide 6.6 possessed higher work of rupture values among the other types of cover yarns. An increase in the SS wire diameter resulted in a significant increment in stiffness values. The results of this study implied that it is important to give importance to component yarn types when designing composite yarns with desired physical properties.
PL
Badano wpływ zmian średnicy przędzy rdzeniowej i owijającej na właściwości mechaniczne przędz kompozytowych wytworzonych techniką wydrążonego wrzeciona metodą oplatania. Przędze kompozytowe zawierające metalowe druty ze stali nierdzewnej (SS) o średnicach 50 μm do 100 μm zostały wyprodukowane z siedmiu przędz owijanych o zróżnicowanym składzie surowcowym i zróżnicowanej strukturze. Przędzami owijającymi były polipropylen, bawełna, poliester/bawełna przędza rdzeniowa, ciągłe włókna poliestrowe, ciągłe włókna PA z poliamidu 6.6, poliester/poliester przędza rdzeniowa oraz cięte włókna poliestrowe. Mierzono i wyznaczano właściwości mechaniczne przy rozciąganiu i sztywność. Zgodnie z analizami średnica przędzy rdzeniowej, rodzaj przędzy oplatającej i interakcje zachodzące pomiędzy tymi parametrami okazały się istotnymi czynnikami wpływającymi na wytrzymałość na rozciąganie, wydłużenie przy zerwaniu, pracę zrywania i właściwości charakteryzujące sztywność przędz kompozytowych. Przeprowadzono dokładną analizę wpływu przędz składowych na uzyskane parametry oraz wytypowano korzystne dla danych warunków rozwiązanie.
Rocznik
Strony
51--58
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Department of Textile Engineering, Faculty of Engineering & Architecture, University of Uludag, Bursa, Turkey
autor
  • Graduate School of Natural and Applied Science, University of Uludag, Bursa, Turkey
Bibliografia
  • 1. Alagirusamy R, Das A. Technical Textile Yarns. Woodhead Publishing Series in Textiles No. 101,U.K, 2010, ISBN 1 84569 549 6, pp. 259-260
  • 2. Lou CW. Process of Complex Core Spun Yarn Containing a Metal Wire. Textile Research Journal 2005;75,6:466–473.
  • 3. Bedeloglu AÇ, Bozkurt Y. Textiles Types, Uses and Production Methods. Nova Science Publishers, USA, New York, 2012, ISBN 978-1-62100-239-0, 317-329.
  • 4. Perumalraj R, Dasaradan BS, Nalankili G. Copper, Stainless Steel, Glass Core Yarn, and Ply Yarn Woven Fabric Composite Materials Properties. Journal of Reinforced Plastics & Composites 2010;29,20:3074-3082.
  • 5. Bedeloglu A, Sunter N, Bozkurt Y. Manufacturing and Properties of Yarns Containing Metal Wires. Materials and Manufacturing Processes 2011;26,11:1378-1382.
  • 6. Bedeloglu A. Investigation of Electrical, Electromagnetic Shielding and Usage Properties of Woven Fabrics Made from Different Hybrid Yarns Containing Stainless Steel Wires. Journal of the Textile Institute 2013;104,12:1359-1373.
  • 7. Po-Wen H, An-Pang C, Ching-Wen L, Jia-Horng L. Electromagnetic Shielding Effectiveness and Functions of Stainless Steel/Bamboo Charcoal Conductive Fabrics. Journal of Industrial Textiles 2014;44,3:477-494.
  • 8. Ortlek HG, Kılıc G, Okyay G, Bilgin S. Electromagnetic Shielding Characteristics of Different Fabrics Knitted from Yarns Containing Stainless Steel Wire. Industria Textila 2011;62,6:304–308.
  • 9. Su CI, Chern JT. Effect of Stainless Steel Containing Fabrics on Electromagnetic Shielding Effectiveness. Textile Research Journal 2004;74,1:51-54.
  • 10. Chen HC, Lin JH, Lee KC. Electromagnetic Shielding Effectiveness of Copper/Stainless Steel/Polyamide Fiber Co-Woven-Knitted Fabric Reinforced Polypropylene Composites. Journal of Reinforced Plastics and Composites 2008;27,2:187-204.
  • 11. Ozen MS, Sancak E, Beyit A, Usta İ, Akalin M. Investigation of Electromagnetic Shielding Properties of Needle-Punched Nonwoven Fabrics with Stainless Steel and Polyester Fiber. Textile Research Journal 2013;83,8:849-858.
  • 12. Rajendrakumar K, Thilagavathi G. A Study on the Effect of Construction Parameters of Metallic Wire/Core Spun Yarn Based Knitted Fabrics on Electromagnetic Shielding. Journal of Industrial Textiles 2013;42,4:400-416.
  • 13. Shyr TW, Shie JW. Electromagnetic Shielding Mechanisms Using Soft Magnetic Stainless Steel Fiber Enabled Polyester Textiles. Journal of Magnetism and Magnetic Materials 2012;324, 23:4127–4132.
  • 14. Perumalraj R, Dasaradan BS, Anbarasu R, Arokiaraj P, Leo Harish S. Electromagnetic shielding effectiveness of copper core-woven fabrics. Journal of The Textile Institute 2009; 100,6:512–524.
  • 15. Deniz DD, Kadoğlu H. Electromagnetic Shielding Characterization of Conductive Woven Fabrics Produced with Silver-Containing Yarns. Textile Research Journal 2015;85,10:1009-1021.
  • 16. Das AJ, Krishnasamy JR, Alagirusamy RA, Basu A. Electromagnetic Interference Shielding Effectiveness of Ss/Pet Hybrid Yarn Incorporated Woven Fabrics. Fibers and Polymers 2014;15,1:169-174.
  • 17. Zhe L, Yongheng Z, Xing R, Xiuchen W. Influence of Metal Fibre Content of Blended Electromagnetic Shielding Fabric on Shielding Effectiveness Considering Fabric Weave. Fibres & Textiles in Eastern Europe 2015; 23,4: 83-87.
  • 18. Örtlek HG, Çalışkan Ç, Kurban R. A Comparative Study on the Physical Properties of Hybrid Yarns Containing Copper Wire. Journal of Textiles and Engineer 2013;20,89:11-20.
  • 19. Perumalraj R, Dasaradan BS. Tensile Properties of Copper Core Yarn. Journal of Reinforced Plastics and Composites 2010;29,11:1688-1701.
  • 20. Bedeloglu A, Sunter N. Investigation of Polyacrylic/Metal Wire Composite Yarn Characteristics Manufactured on Fancy Yarn Machine. Materials and Manufacturing Processes 2013;28,6:650-656.
  • 21. Bedeloglu A, Sunter N, Yildirim B, Bozkurt Y. Bending and Tensile Properties of Cotton/Metal Wire Complex Yarns Produced for Electromagnetic Shielding and Conductivity Applications. Journal of the Textile Institute 2012;103, 12: 1304-1311.
  • 22. Schwarz A, Kazani I, Cuny L, Hertleer C, Ghekiere F, Clercq DG, Langenhove LV. Comparative Study On The Mechanical Properties Of Elastic, Electro-Conductive Hybrid Yarns and Their Input Materials. Textile Research Journal 2011;81,16:1713-1723.
  • 23. Lou CW. Process of Complex Core Spun Yarn Containing a Metal Wire. Textile Research Journal 2005;75,6:466-473.
  • 24. Örtlek HG. Developing of Innovative Core-Spun Yarns for Denim Fabrics. In “Proc. UTİB 5th International R&D Brokerage Event”, Bursa, Turkey, 2013, pp.305-306, ISBN: 978-605-5919-05-4
  • 25. ISO 139:2005. Textiles — Standard Atmospheres for Conditioning and Testing
  • 26. ISO 2060:1994. Textiles -- Yarn from packages -- Determination of linear density (mass per unit length) by the skein method
  • 27. ISO 2062:2009. Textiles - Yarns from packages - Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester
  • 28. Ghosh A, Patanaik A, Anandjiwala RD, Rengasamy RS. A Study on Dynamic Friction of Different Spun Yarns. Journal of Applied Polymer Science 2008;108:3233- 3238.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d84af06c-0197-49f7-813d-d2c513e54255
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.