Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, we obtained the stability of the multi-variable bi-Jensen-type functional equation: [formula].
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20230105
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea
autor
- Department of Mathematics Education, College of Education, Mokwon University, Daejeon 35349, Republic of Korea
Bibliografia
- [1] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1960.
- [2] M. R. Abdoollahpour, and M. T. Rassias, Hyers-Ulam stability of hypergeometric differential equations, Aequationes Math. 93 (2019), no. 4, 691–698.
- [3] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
- [4] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223–237.
- [5] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, 2002.
- [6] D. H. Hyers, G. Isac, and T.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, 1998.
- [7] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
- [8] P. Kannappan, Functional Equations and Inequalities with Applications, Springer, New York, 2009.
- [9] J.-H. Bae and W.-G. Park, On the solution of a bi-Jensen functional equation and its stability, Bull. Korean Math. Soc. 43 (2006), 499–507.
- [10] K.-W. Jun, I.-S. Jung, and Y.-H. Lee, Stability of a bi-Jensen functional equation II, J. Inequal. Appl. 2009 (2009), 976284.
- [11] K.-W. Jun, Y.-H. Lee, and J.-H. Oh, On the Rassias stability of a bi-Jensen functional equation, J. Math. Inequal. 2 (2008), 363–375.
- [12] K.-W. Jun, Y.-H. Lee, and J.-H. Oh, On the stability of a bi-Jensen functional equation, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 17 (2010), 231–247.
- [13] G.-H. Kim and Y.-H. Lee, Hyers-Ulam stability of a bi-Jensen functional equation on a punctured domain, J. Inequal. Appl. 2010 (2010), 476249.
- [14] W.-G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011), 193–202.
- [15] I. EL-Fassi, Brzdek’s fixed point method for the generalized hyperstability of bi-Jensen functional equation in (2, β)-Banach spaces, Filomat 32 (2018), 4899–4910.
- [16] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115–148.
- [17] S. Gähler, Lineare 2-normierte Räumen, Math. Nachr. 28 (1964), 1–43.
- [18] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000.
- [19] N. Kalton, Handbook of the Geometry of Banach Spaces: Vol. 2, Chapter 25. Quasi-Banach spaces, Elsevier Science B.V., Amsterdam, 2003.
- [20] S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ./Reidel, Warszawa/Dordrecht, 1984.
- [21] A. Najati and M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 399–415.
- [22] J.-H. Bae and W.-G. Park, Stability of bi-additive mappings and bi-Jensen mappings, Symmetry 13 (2021), 1180.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d84779f6-9aa3-4db3-8cd9-a2f0d22c994d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.