PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Milling Time Parameter on the Microstructure and the Thermoelectric Properties of n-Type Bi2Te2.7Se0.3 Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanostructured thermoelectric materials receiving great attention for its high thermoelectric performance. In this research, nanostructured n-type Bi2 Te2.7 Se0.3 alloys have prepared using high energy ball milling and followed by spark plasma sintering. Also, we have varied ball milling time to investigate milling time parameter on the thermoelectric properties of n-type Bi2 Te2.7 Se0.3 powder. The powders were discrete at 10 min milling and later particles tend to agglomerate at higher milling time due to cold welding. The bulk fracture surface display multi-scale grains where small grains intersperse in between large grains. The maximum Seebeck coefficient value was obtained at 20-min milling time due to their lower carrier density. The κ values were decreased with increasing milling time due to the decreasing trend observed in their κL values. The highest ZT of 0.7 at 350 K was observed for 30-min milling time which was ascribed to its lower thermal conductivity. The Vickers hardness values also greatly improved due to their fine microstructure.
Twórcy
autor
  • Kongju National University, Division of Advanced Materials Engineering, 1223-2, Seobuk-gu, Cheonan-si, Chungnam, 331-717, South Korea
autor
  • Kongju National University, Division of Advanced Materials Engineering, 1223-2, Seobuk-gu, Cheonan-si, Chungnam, 331-717, South Korea
autor
  • Kongju National University, Division of Advanced Materials Engineering, 1223-2, Seobuk-gu, Cheonan-si, Chungnam, 331-717, South Korea
autor
  • Kongju National University, Division of Ceramic Design, Gongju-si, South Korea
autor
  • Kongju National University, Division of Mechanical and Automotive Engineering, Cheonan, South Korea
autor
  • Kongju National University, Division of Advanced Materials Engineering, 1223-2, Seobuk-gu, Cheonan-si, Chungnam, 331-717, South Korea
Bibliografia
  • [1] F. J. Disalvo, Science 285, 703-706 (1999).
  • [2] G.J.M. Velders, A. R. Ravishankara, M. K. Miller, M. J. Molina, J. Alcamo, J. S. Daniel, D. W. Fahey, S. A. Montza, S. Reimann, SCIENCE 335, 922-923 (2012).
  • [3] H. S. Kim, N. A. Heinz, Z. M. Gibbs, Y. Tang, S. D. Kang, G. F. Snyder, Mater. Today 20, 452-458 (2017).
  • [4] L. Hu, Y. Zhang, H. Wu, Y. Liu, J. Li, J. He, W. Ao, F. Liu, S. Pennycook, X. Zeng, Adv. Funct. Mater. 1803617, 1-13 (2018).
  • [5] B. Madavali, H. S. Kim, K. H. Lee, S. J. Hong, J. Appl. Phys. 121, 225104 (2017).
  • [6] Z. G. Chan, G. Han, L. Yang, L. Cheng, J. Zou, Prog. Nat. Sci. 22, 535-549 (2016).
  • [7] J. Zhang, B. Xu, L. Min, D. Yu, J. Yang, F. Yu, Z. Liu, J. He, B. Wen, Y. Tian, Acta Mater. 60, 1246-1251 (2012).
  • [8] Ch. Gayner, K. K. Kar, Prog. Mater Sci. 83, 330-382 (2016).
  • [9] M. G. Kanatzidis, Chem. Mater. 22, 648-659 (2010).
  • [10] H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, M. Nil, Sust. Energ. Rev. 82, 4159-4169 (2018).
  • [11] L. Yang, Z. G. Chen, M. Hong, G. Han, J. Zou, ACS Appl. Mater. Interfaces. 7, 23694-23699 (2015).
  • [12] C. Kim, D. H. Kim, Y. S. Han, J. S. Chung, S. H. Park, H. Kim, Powder Technol. 214, 463-468 (2011).
  • [13] P. Srivastava, K. Singh, J Therm Anal Calorim 110, 523-527 (2012).
  • [14] S. Gupta, S. Neeleshwar, V. Kumar, Y. Y. Chen, Adv. Mater. Lett. 3, 50-54 (2012).
  • [15] K. T. Kim, H. M. Lee, D. W. Kim, K. J. Kim, G. H. Ha, J. Korean Phys. Soc. 57 (4), 1037-1040 (2010).
  • [16] M. Gharsallah, F. S. Sanchez, J. Bermudez, N. M. Nemes, J. L. Martinez, F. Elhalouani, J. A. Alonso, Nanoscale Res. Lett. 11 (142), 1-7 (2016).
  • [17] M. Saleemi, M. S. Toprak, S. Li, M. Johnson, M. Muhammed J. Mater. Chem. 22, 725-730 (2012).
  • [18] C. Suryanarayana, Prog. Mater Sci. 58, 383-502 (2013).
  • [19] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, SCIENCE 320, 634-638 (2008).
  • [20] Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Nano Lett. 8 (8), 2580-2584 (2008).
  • [21] B. Madavali, H. S. Kim, K. P. Lee, Y. Isoda, F. Gascoin, S. J. Hong, Mater. Des. 112, 485-494 (2016).
  • [22] Y. Pan, T. Wei, Q. Cao, J. Li, Mater. Sci. Eng. B 197, 75-81 (2015).
  • [23] H. Julian Goldsmid, Introduction to Thermoelectricity, New York 2009.
  • [24] H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Synder, APL Mater. 3, 041506 (2015).
  • [25] L. Hu, Y. Zhang, H. Wu, Y. Liu, J. Li, J. He, W. Ao, F. Liu, S. J. Pennycook, X. Zeng, Adv. Funct. Mater. 28, 1803617 (2018).
  • [26] L. Zhao, B. Zhang, J. Li, M. Zhou, W. Liu, J. Liu, J. Alloys. Compd. 455, 259-264 (2008).
Uwagi
EN
1. This work was supported by the research grant of the Kongju National University in 2018.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d84609a5-c54e-4425-a918-a82a97a2c6ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.