Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Funkcjonalnie zintegrowany przyrząd do pomiaru temperatury
Języki publikacji
Abstrakty
The article presents a method of implementing a functionally integrated device for temperature measurement, which allows for controlled heating of the primary temperature transducer, measurement of the heating temperature as well as the temperature and differential temperature of the investigated and reference samples. The heating speed is regulated by the selection of the frequency and duration of the control impulses. To measure the temperature and temperature difference, it is proposed to use measuring currents of different polarity, which make it possible to simplify the device design. The methods of linearisation of the conversion function of primary temperature transducer based on the formation of compensating currents in given measurement ranges have been investigated. The conducted studies showed that the temperature measurement error does not exceed 0.11°C and 0.005°C in the control heating mode and in the temperature measurement mode, respectively. The temperature measurement error of the investigated and reference samples and the differential temperature measurement error does not exceed ±0.003°C and 0.001°C, respectively.
W artykule przedstawiono sposób realizacji funkcjonalnie zintegrowanego przyrządu do pomiaru temperatury, który pozwala na kontrolowane nagrzewanie pierwotnego przetwornika temperatury, pomiar temperatury nagrzewania, a także pomiar temperatury i różnicy temperatur próbki badanej i referencyjnej. Prędkość nagrzewania jest regulowana poprzez wybór częstotliwości i czasu trwania impulsów sterujących. Do pomiaru temperatury i różnicy temperatur proponuje się stosowanie prądów pomiarowych o różnej polaryzacji, co pozwoliło uprościć ogólną konstrukcję urządzenia. Badano metody linearyzacji funkcji przetwarzania pierwotnego przetwornika temperatury bazującego na tworzeniu prądów kompensacyjnych w określonych zakresach pomiarowych. Przeprowadzone badania wykazały, że błąd pomiaru temperatury nie przekracza odpowiednio 0,11°C i 0,005°C w trybie kontrolowanego nagrzewania i w trybie pomiaru temperatury. Błąd pomiaru temperatury próbki badanej i referencyjnej oraz błąd pomiaru różnicy temperatur nie przekracza odpowiednio ±0,003°C i 0,001°C.
Rocznik
Tom
Strony
32--37
Opis fizyczny
Bibliogr. 34 poz., wykr.
Twórcy
autor
- Lviv Polytechnic National University, Department of Electronic Engineering, Lviv, Ukraine
autor
- Danylo Halytsky Lviv National Medical University, Department of Medical Informatics, Lviv, Ukraine
autor
- Lviv Polytechnic National University, Department of Electronic Engineering, Lviv, Ukraine
autor
- Lviv Polytechnic National University, Department of Electronic Engineering, Lviv, Ukraine
autor
- Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine
autor
- Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine
Bibliografia
- [1] Azadi Kenari S. et al.: Thermal Flow Meter with Integrated Thermal Conductivity Sensor. Micromachines 14(7), 2023, 1280.
- [2] Babak V., Kovtun S., Dekusha O.: Information-measuring technologies in the metrological support of heat flux measurements. CEUR Workshop Proceedings 2608, 2020, 379–393.
- [3] Barylo G. I. et al.: Signal transducer of functionally integrated thermomagnetic sensors. Visnyk NTUU KPI 76, 2019, 63–71.
- [4] Bianchi L. et al.: Thermophysical and mechanical properties of biological tissues as a function of temperature: A systematic literature review. International Journal of Hyperthermia 39(1), 2022, 297–340.
- [5] Boyko O. et al.: Functionally integrated sensors of thermal quantities based on optocoupler. Proceeding of SPIE 10808, 2018, 306–311.
- [6] Boyko O., Holyaka R., Hotra Z.: Functionally integrated sensors on magnetic and thermal methods combination basis. 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). 2018, 697–701.
- [7] Boyko O., Hotra O.: Improvement of dynamic characteristics of thermoresistive transducers with controlled heating. Przegląd Elektrotechniczny 5, 2019, 110–113
- [8] Boyko O. V., Hotra Z. Y.: Analysis and research of methods of linearization of the transfer function of precision semiconductor temperature sensors. Physics and Chemistry of Solid State 21(4), 2020, 737–742.
- [9] Braissant O. et al.: Biomedical use of isothermal microcalorimeters. Sensors 10(10), 2010, 9369–9383.
- [10] Braissant O. et al.: Use of Isothermal Microcalorimetry to Monitor Microbial Activities. FEMS Microbiol. Lett 303, 2010, 1–8.
- [11] Conway A. et al.: Accuracy and precision of zero-heat-flux temperature measurements with the 3M™ Bair Hugger™ Temperature Monitoring System: a systematic review and meta-analysis. Journal of Clinical Monitoring and Computing 35, 2021, 39–49.
- [12] Dekusha O. et al.: Information-Measuring Technologies in the Metrological Support of Thermal Conductivity Determination by Heat Flow Meter Apparatus. Systems, Decision and Control in Energy I Springer, Cham. 2020, 217–230.
- [13] Farkas G.: Temperature-Dependent Electrical Characteristics of Semiconductor Devices. Theory and Practice of Thermal Transient Testing of Electronic Components 2023, 139–169.
- [14] Feng J. et al.: Droplet-based differential microcalorimeter for real-time energy balance monitoring. Sensors and Actuators B: Chemical, 312, 2020, 127967.
- [15] Gros S. J. et al.: Personalized treatment response assessment for rare childhood tumors using microcalorimetry–exemplified by use of carbonic anhydrase IX and aquaporin 1 inhibitors. International journal of molecular sciences 20(20), 2019, 4984.
- [16] Hotra O., Boyko O., Zyska T.: Improvement of the operation rate of medical temperature measuring devices. Proc. SPIE 92914, 2014, 92910A.
- [17] Hotra O., Boyko O.: Analogue linearization of transfer function of resistive temperature transducers. Proc. SPIE 9662, 2015, 966247.
- [18] Hotra O., Boyko O.: Compensation bridge circuit with temperature-dependent voltage divider. Przegląd Elektrotechniczny 4a, 2012, 169–171.
- [19] Hotra O., Dekusha O., Kovtun S.: Analysis of the Characteristics of Bimetallic and Semiconductor Heat Flux Sensors for In-Situ Measurements of Envelope Element Thermal Resistance. Measurement 2021, 109713.
- [20] Khaw M. K., Mohd-Yasin F., Nguyen N. T.: Microcalorimeter: Design considerations, materials and examples. Microelectronic Engineering, 158, 2016, 107–117.
- [21] Kuril A. K.: Differential scanning calorimetry: a powerful and versatile tool for analyzing proteins and peptides. J Pharm Res Int 36(7), 2024, 179–187.
- [22] Kuttner H. et al.: Microminiaturized thermistor arrays for temperature gradient, flow and perfusion measurements. Sensors and Actuators A: Physical 27(1-3), 1991, 641–645.
- [23] Lubbers B. et al.: Microfabricated calorimeters for thermometric enzyme linked immunosorbent assay in one-Nanoliter droplets. Biomedical Microdevices 21, 2019, 1–7.
- [24] Lundén O. P., Paldanius T.: Linearization of BJTs with logarithmic predistortion. IEEE Radio and Wireless Symposium (RWS) 2019, 1–3.
- [25] Magoń A., Pyda M.: Apparent heat capacity measurements and thermodynamic functions of d(−)-fructose by standard and temperature-modulated calorimetry. The Journal of Chemical Thermodynamics 56, 2013, 67–82.
- [26] Martins E. et al.: Skin byproducts of reinhardtius hippoglossoides (Greenland Halibut) as ecosustainable source of marine collagen. Applied Sciences 12(21), 2022, 11282.
- [27] Ni S. et al.: A SiN microcalorimeter and a non-contact precision method of temperature calibration J. Microel. Syst. 29(5), 2020, 1103–1105.
- [28] Pertijs M. A., Makinwa K. A., Huijsing J. H.: A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1C from -55C to 125C. IEEE Journal of Solid-State Circuits 40(12), 2005.
- [29] Pollock D. D.: Thermocouples: theory and properties. Routledge 2018.
- [30] Sundararajan S. et al.: BJT Based Translinear Implementation of an Evolutionary Optimised Non-Linear Function for Sensor Linearisation. IETE Journal of Research 70(6), 2023, 5905–5918.
- [31] Wang F., Han Y., Gu N.: Cell temperature measurement for biometabolism monitoring ACS Sens. 6(2), 2020, 290–302.
- [32] Wang Y. et al.: Recent advances of microcalorimetry for studying cellular metabolic heat. TrAC Trends in Analytical Chemistry 143, 2021, 116353.
- [33] Zaporozhets A. et al.: Information Measurement System for Thermal Conductivity Studying. Advanced Energy Technologies and Systems I. Studies in Systems, Decision and Control 395, 2022.
- [34] Zhu H. et al.: The development of ultrasensitive microcalorimeters for bioanalysis and energy balance monitoring. Fundamental Research 4(6), 2023, 1625–1638.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d84170f3-4319-46fc-a5c1-6e4674feca67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.