PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of PID, fuzzy PID, and ANFIS controllers for 2-DOF helicopter trajectory tracking: simulation and hardware implementation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates advanced control techniques to evaluate the trajectory tracking control of a two-degrees-of-freedom (2-DOF) helicopter system based on simulation and hardware implementation experiments. For this, a Quanser Aero 2 platform and its QUARC software, integrated within MATLAB/Simulink, are used to design and implement multiple controllers, including Proportional Integral Derivative (PID), Fuzzy PID, and Adaptive Neuro Fuzzy Inference System (ANFIS) controllers. A two-phase approach was followed to assess and compare these controllers’ ability to handle parametric uncertainties, unmodeled dynamics, and matched disturbances. Firstly, simulation experiments were conducted using an uncertain system model, considering the controller’s responses in scenarios with and without cross-coupling and matched disturbances. Subsequently, hardware experiments were conducted under the same conditions to validate the simulation results, providing real-time performance comparisons. Finally, a rigorous quantitative assessment based on multiple performance metrics including Root Mean Square Error (RMSE), peak value, Integral Square Error (ISE), Integral of Absolute Error (IAE), and Integral of Time-multiplied Absolute Error (ITAE) demonstrated overperformance achieved using ANFIS for pitch control and Fuzzy PID for yaw control.
Rocznik
Strony
323--349
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., fot.
Twórcy
  • Robotics and Industrial Automation Laboratory, Centre de Développement des Technologies Avancées (CDTA), Algiers, Algeria
  • Robotics and Industrial Automation Laboratory, Centre de Développement des Technologies Avancées (CDTA), Algiers, Algeria
Bibliografia
  • [1] S. Iqbal. A study on UAV operating system security and future research challenges. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pages 0759–0765, Las Vegas, USA, 2021. doi: 10.1109/CCWC51732.2021.9376151.
  • [2] X. Li and A.V. Savkin. Networked unmanned aerial vehicles for surveillance and monitoring: A survey. Future Internet, 13(7):174, 2021. doi: 10.3390/fi13070174.
  • [3] A.W.N. Ibrahim, P.W. Ching, G.L.G Seet, W.S.M. Lau, and W. Czajewski. Moving objects detection and tracking framework for UAV-based surveillance. In 2010 Fourth Pacific-Rim Symposium on Image and Video Technology, pages 456–461, Singapore, 2010. doi: 10.1109/P- SIVT.2010.83.
  • [4] Z. Zhao, J. Zhang, Z. Liu, C. Mu, and K.-S. Hong. Adaptive neural network control of an uncertain 2-DOF helicopter with unknown backlash-like hysteresis and output constraints. IEEE Transactions on Neural Networks and Learning Systems, 34(12):10018–10027, 2023. doi: 10.1109/TNNLS.2022.3163572.
  • [5] M.H. Khalesi, H. Salarieh, and M.S. Foumani. System identification and robust attitude control of an unmanned helicopter using novel low-cost flight control system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 234(5):634–645, 2020. doi: 10.1177/0959651819869718.
  • [6] C.K. Verginis, C.P. Bechlioulis, A.G. Soldatos, and D. Tsipianitis. Robust trajectory tracking control for uncertain 3-DOF helicopters with prescribed performance. IEEE/ASME Transactions on Mechatronics, 27(5):3559–3569, 2022. doi: 10.1109/TMECH.2021.3136046.
  • [7] R. Fellag, M. Guiatni, M. Hamerlain, and N. Achour. Robust continuous third-order finite time sliding mode controllers for exoskeleton robot. Archive of Mechanical Engineering, 68(4):395–414, 2021. doi: 10.24425/ame.2021.138399.
  • [8] M. Raghappriya and S. Kanthalakshmi. Pitch and yaw motion control of 2 DOF helicopter subjected to faults using sliding-mode control. Archives of Control Sciences, 32(2):359–381, 2022. doi: 10.24425/acs.2022.141716.
  • [9] B. Godbolt, N.I. Vitzilaios, and A.F. Lynch. Experimental validation of a helicopter autopilot design using model-based PID control. Journal of Intelligent & Robotic Systems, 70:385–399, 2013. doi: 10.1007/s10846-012-9720-7.
  • [10] Y. Niu, X. Jin, J. Li, G. Ji, and K. Hu. The development tendency of artificial intelligence in command and control: a brief survey. Journal of Physics: Conference Series, 1883:012152, 2021. doi: 10.1088/1742-6596/1883/1/012152.
  • [11] O.F. Lutfy, M.S.B. Noor, M.H. Marhaban, and K.A. Abbas. A genetically trained adaptive neuro-fuzzy inference system network utilized as a proportional-integral-derivative-like feedback controller for non-linear systems. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 223(3):309–321, 2009. doi: 10.1243/09596518JSCE683.
  • [12] L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965. doi: 10.1016/S0019-9958(65)90241-X.
  • [13] A. Chaudhary and B. Bhushan. Trajectory tracking of a 2-DOF helicopter system using fuzzy controller approach. In 2021 International Conference on Emerging Techniques in Computational Intelligence (ICETCI), pages 159–164, Hyderabad, India, 2021. doi: 10.1109/ICETCI51973.2021.9574049.
  • [14] M. Jahed and M. Farrokhi. Robust adaptive fuzzy control of twin rotor MIMO system. Soft Computing, 17:1847–1860, 2013. doi: 10.1007/s00500-013-1026-6.
  • [15] S. Zeghlache, K. Kara, and D. Saigaa. Type-2 fuzzy logic control of a 2-DOF helicopter (TRMS system). Open Engineering, 4(3):303–315, 2014. doi: 10.2478/s13531-013-0157-y.
  • [16] O. Saleem and J. Iqbal. Fuzzy-immune-regulated adaptive degree-of-stability LQR for a self- balancing robotic mechanism: design and HIL realization. IEEE Robotics and Automation Letters, 8(8):4577–4584, 2023. doi: 10.1109/LRA.2023.3286176.
  • [17] Y. Mehmood, J. Aslam, N. Ullah, A.A. Alsheikhy, E.U. Din, and J. Iqbal. Robust fuzzy sliding mode controller for a skid-steered vehicle subjected to friction variations. PLoS One, 16(11):e0258909, 2021. doi: 10.1371/journal.pone.0258909.
  • [18] S. Sadala, B. Patre, and D. Ginoya. A new continuous integral sliding mode control algorithm for inverted pendulum and 2-DOF helicopter nonlinear systems: Theory and experiment. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 236(3):518–530, 2022. doi: 10.1177/09596518211048022.
  • [19] R. Fellag, M. Guiatni, M. Hamerlain, and N. Achour. Adaptive finite-time robust sliding mode controller for upper limb exoskeleton robot. In 2022 19th International Multi- Conference on Systems, Signals and Devices (SSD), pages 1255–1260, Setif, Algeria, 2022. doi: 10.1109/SSD54932.2022.9955820.
  • [20] A.H. Zaeri, S.B. Mohd-Noor, M.M. Isa, F.S. Taip, and A.E. Marnani. Disturbance rejection for a 2-DOF nonlinear helicopter model by using MIMO fuzzy sliding mode control with boundary layer. In 2012 Third International Conference on Intelligent Systems Modelling and Simulation, pages 411–416, Kota Kinabalu, Malaysia, 2012. doi: 10.1109/ISMS.2012.129.
  • [21] O. Saleem, K.R. Ahmad, and J. Iqbal. Fuzzy-augmented model reference adaptive PID control law design for robust voltage regulation in DC–DC buck converters. Mathematics, 12(12):1893, 2024. doi: 10.3390/math12121893.
  • [22] M. Pelc. Self-tuning run-time reconfigurable PID controller. Archives of Control Sciences, 21(2):189–205, 2011. doi: 10.2478/v10170-010-0039-y.
  • [23] R. Singh and B. Bhushan. Adaptive neuro-fuzzy-PID and fuzzy-PID-based controller design for helicopter system. In Applications of Computing, Automation and Wireless Systems in Electrical Engineering: Proceedings of MARC 2018, pages 281–293. Singapore, 2019. doi: 10.1007/978-981-13-6772-4_25.
  • [24] M.A. Khanesar and E. Kayacan. Controlling the pitch and yaw angles of a 2-DOF helicopter using interval type-2 fuzzy neural networks. In: Yu, X., Önder Efe, M. (eds) Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics, pages 349–370, Springer, 2015. doi: 10.1007/978-3-319-18290-2_17.
  • [25] A.C. Aras and O. Kaynak. Trajectory tracking of a 2-DOF helicopter system using neuro- fuzzy system with parameterized conjunctors. In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pages 322–326, Besacon, France, 2014. doi: 10.1109/AIM.2014.6878099.
  • [26] J.-S.R. Jang. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3):665–685, 1993. doi: 10.1109/21.256541.
  • [27] M. Öztürk and İ. Özkol. Comparison of self-tuned neuro-fuzzy controllers on 2 DOF helicopter: an application. SN Applied Sciences, 3(1):124, 2021. doi: 10.1007/s42452-020-03984-5.
  • [28] Quanser. Quarc real-time control software. https://www.quanser.com/products/quarc-real-time-control-software/#overview, 2022. [Accessed 18-09-2024].
  • [29] Quanser. Aero 2 : Reconfigurable dual-rotor aerospace experiment for controls education and research. https://www.quanser.com/products/aero-2/, 2022. [Accessed 18-09-2024].
  • [30] Quanser. Quanser Aero 2 Laboratory guide. Quanser, 2022.
  • [31] R. Fellag and M. Belhocine. 2-DOF helicopter control via state feedback and full/reduced-order observers. In 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), pages 1–6, Setif, Algeria, 2024. doi: 10.1109/ICEEAC61226.2024.10576208.
  • [32] Y.-C. Ho. Review of book: J.S.R. Jang, C.T. Sun, and E. Mizutani. Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence. IEEE Transactions on Automatic Control, 42(10):1482–1484, 1997.
  • [33] F. Liu, H. Wang, Q. Shi, H. Wang, M. Zhang, and H. Zhao. Comparison of an ANFIS and fuzzy PID control model for performance in a two-axis inertial stabilized platform. IEEE Access, 5:12951–12962, 2017. doi: 10.1109/ACCESS.2017.2723541.
  • [34] Inc The MathWorks. Neuro-Adaptive Learning and ANFIS – MATLAB & Simulink – math- works.com. https://www.mathworks.com/help/fuzzy/neuro-adaptive-learning-and-anfis.html, 2023. [Accessed 18-09-2024].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d83f98a2-9fba-41a5-a490-eabde66731f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.