PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An iterative approach for solving fractional order Cauchy reaction-diffusion equations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reaction-diffusion equations are vitally important due to their role in developing sturdy models in various scientific fields. In the present work, we address an algorithm of the Daftardar-Gejji and Jafari method for solving the nonlinear functional equations of the form ψ = f +L(ψ) + N(ψ). Further, we employ this algorithm to solve Caputo derivative-based time-fractional Cauchy reaction-diffusion equations. We obtain solutions in a series form that converges to a closed form. Furthermore, we perform numerical simulations for the various values of the order of fractional derivatives. The computational procedure of the proposed algorithm is not burdensome. However, it is time-efficient and can easily be implemented using a computer algebra system.
Rocznik
Strony
19--32
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics, National Defence Academy Khadakwasla, Pune-411023, India
Bibliografia
  • [1] Diethelm, K. (2013). A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dynamics, 71, 613-619.
  • [2] Chen, J., Zhang, T., & Zhou, Y. (2020). Dynamics of a risk-averse newsvendor model with continuous-time delay in supply chain financing. Mathematics and Computers in Simulation, 169, 133-148.
  • [3] Valentim Jr, C.A., Oliveira, N.A., Rabi, J.A., & David, S.A. (2020). Can fractional calculus help improve tumor growth models? Journal of Computational and Applied Mathematics, 379, 112964.
  • [4] Johansyah, M.D., Supriatna, A.K., Rusyaman, E., & Saputra, J. (2021). Application of fractional differential equation in economic growth model: A systematic review approach. AIMS Mathematics, 6(9), 10266-10280.
  • [5] Lu, Z., Yan, H., & Zhu, Y. (2019). European option pricing model based on uncertain fractional differential equation. Fuzzy Optimization and Decision Making, 18, 199-217.
  • [6] Diethelm, K. (2021). Fast solution methods for fractional differential equations in the modeling of viscoelastic materials. In 2021 9th International Conference on Systems and Control (ICSC) (pp. 455-460). IEEE.
  • [7] Graef, J.R., Ho, S.S., Kong, L., & Wang, M. (2019). A fractional differential equation model for bike share systems. Journal of Nonlinear Functional Analysis, 2019(1).
  • [8] Jiang, Y., Xia, B., Zhao, X., Nguyen, T., Mi, C., & de Callafon, R.A. (2017). Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery. Energy, 135, 171-181.
  • [9] Iqbal, Z., Rehman, M.A.U., Imran, M., Ahmed, N., Fatima, U., Akgul, A., & Jarad, F. (2023). A finite difference scheme to solve a fractional order epidemic model of computer virus. AIMS Mathematics, 8, 2337-2359.
  • [10] Liaqat, M.I., Akgul, A., De la Sen, M., & Bayram, M. (2023). Approximate and exact solutions in the sense of conformable derivatives of quantum mechanics models using a novel algorithm. Symmetry, 15(3), 744.
  • [11] Zhang, Y. (2009). A finite difference method for fractional partial differential equation. Applied Mathematics and Computation, 215(2), 524-529.
  • [12] Ray, S.S., & Gupta, A.K. (2018). Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations. CRC Press.
  • [13] Shakeel, M., Hussain, I., Ahmad, H., Ahmad, I., Thounthong, P., & Zhang, Y.F. (2020). Meshless technique for the solution of time-fractional partial differential equations having real-world applications. Journal of Function Spaces, 2020, 1-17.
  • [14] Yokus, A., Durur, H., Ahmad, H., Thounthong, P., & Zhang, Y.F. (2020). Construction of exact traveling wave solutions of the Bogoyavlenskii equation by (G ′ /G,1/G)-expansion and (1/G ′ )- expansion techniques. Results in Physics, 19, 103409.
  • [15] Wang, F., Ali, S.N., Ahmad, I., Ahmad, H., Alam, K.M., & Thounthong, P. (2022). Solution of Burgers’ equation appears in fluid mechanics by multistage optimal homotopy asymptotic method. Thermal Science, 26(1 Part B), 815-821.
  • [16] Li, C., & Wang, Y. (2009). Numerical algorithm based on Adomian decomposition for fractional differential equations. Computers & Mathematics with Applications, 57(10), 1672-1681.
  • [17] Bakkyaraj, T., & Thomas, R. (2022). Lie symmetry analysis and exact solution of (2+1)- dimensional nonlinear time-fractional differential-difference equations. Pramana, 96(4), 225.
  • [18] Daftardar-Gejji, V., & Jafari, H. (2006). An iterative method for solving nonlinear functional equations. Journal of Mathematical Analysis and Applications, 316(2), 753-763.
  • [19] Ahmad, H., Khan, T.A., & Yao, S.W. (2020). An efficient approach for the numerical solution of fifth-order KdV equations. Open Mathematics, 18(1), 738-748.
  • [20] Yusuf, A., Sulaiman, T.A., Khalil, E.M., Bayram, M., & Ahmad, H. (2021). Construction of multi-wave complexiton solutions of the Kadomtsev-Petviashvili equation via two efficient analyzing techniques. Results in Physics, 21, 103775.
  • [21] Brikaa, M.G. (2015). An analytic algorithm for the space-time fractional reaction-diffusion equation. Journal of Interpolation and Approximation in Scientific Computing, 2015(2), 112-127.
  • [22] Gul, H., Alrabaiah, H., Ali, S., Shah, K., & Muhammad, S. (2020). Computation of solution to fractional order partial reaction diffusion equations. Journal of Advanced Research, 25, 31-38.
  • [23] Ali, S., Bushnaq, S., Shah, K., & Arif, M. (2017). Numerical treatment of fractional order Cauchy reaction diffusion equations. Chaos, Solitons & Fractals, 103, 578-587.
  • [24] Kumar, S., Ghosh, S., Jleli, M., & Araci, S. (2022). A fractional system of Cauchy-reaction diffusion equations by adopting Robotnov function. Numerical Methods for Partial Differential Equations, 38(3), 470-489.
  • [25] Yildirim, A. (2009). Application of He’s homotopy perturbation method for solving the Cauchy reaction-diffusion problem. Computers & Mathematics with Applications, 57(4), 612-618.
  • [26] Rezapour, S., Liaqat, M.I., & Etemad, S. (2022). An effective new iterative method to solve conformable Cauchy reaction-diffusion equation via the Shehu transform. Journal of Mathematics, 2022.
  • [27] Wang, K., & Liu, S. (2016). A new Sumudu transform iterative method for time-fractional Cauchy reaction-diffusion equation. Springer Plus, 5, 1-20.
  • [28] Ahmad, H., Khan, T.A., Ahmad, I., Stanimirovic, P.S., & Chu, Y.M. (2020). A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations. Results in Physics, 19, 103462.
  • [29] Chu, Y.M., Shah, N.A., Ahmad, H., Chung, J.D., & Khaled, S.M. (2021). A comparative study of semi-analytical methods for solving fractional-order Cauchy reaction-diffusion equation. Fractals, 29(06), 2150143.
  • [30] Kumar, S., Kumar, A., Abbas, S., Al Qurashi, M., & Baleanu, D. (2020). A modified analytical approach with existence and uniqueness for fractional Cauchy reaction-diffusion equations. Advances in Difference Equations, 2020(1), 1-18.
  • [31] Kumar, M., Jhinga, A., & Daftardar-Gejji, V. (2020). New algorithm for solving non-linear functional equations. International Journal of Applied and Computational Mathematics, 6(2), 26.
  • [32] Kilbas, A.A., Marichev, O.I., & Samko, S.G. (1993). Fractional Integrals and Derivatives (Theory and Applications). CRS Press.
  • [33] Daftardar-Gejji, V. (Ed.). (2013). Fractional Calculus. Alpha Science International Limited.
  • [34] Areshi, M., Zidan, A.M., Shah, R., & Nonlaopon, K. (2021). A modified technique of fractional order Cauchy-reaction diffusion equation via Shehu transform. Journal of Function Spaces, 2021, 1-15
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8397c8f-16ae-4a03-b48a-8c04e372ba26
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.