PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of post-fermentation maize waste by thermal conversion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the essential requirements in the running of a biogas plant is the proper management of the by-product resulting from the production of biogas, i.e. the post-fermentation mass. One of the possibilities for the treatment of a fixed post-fermentation fraction is its combustion. In this study, the basic physicochemical properties of the post-fermented pulp obtained from maize waste are determined in terms of their combustion potential. Parameters such as elemental analysis, moisture content, volatile matter content, ash content, heat of combustion and calorific value were determined for the raw material without pre- -treatment, as well as for the raw material after chemical hydrolysis and extrusion. The tested material was subjected to both acidic and alkaline hydrolysis. Acidic hydrolysis was carried out with sulfuric acid (concentration 3% and 7%) and alkaline hydrolysis with sodium hydroxide (concentration 1% and 3%). Under pre-treatment, the raw material was also subjected to low- and hightemperature extrusion. Low-temperature extrusion was carried out at 110°C, and high-temperature extrusion in the range 140–160°C. The purpose of the pre- -treatment was to achieve the fragmentation of lignin, a substance not degraded by enzymatic hydrolysis. On the basis of the research, the suitability of the analyzed raw material for thermal utilization was determined. After drying, the residue after fermentation had high calorific value, similar to that of other types of biomass. It also had a lower content of volatile matter and increased ash content compared with the non-fermented raw material. High nitrogen content was a significant parameter distinguishing the studied material from other types of biomass. The decision to burn waste should be preceded by careful analysis of its physical and chemical properties, as this enables appropriate preventive action to be taken.
Rocznik
Strony
115--126
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Institute of Chemical Wood Technology, Poznan University of Life Sciences, Poznan, Poland
  • Institute of Chemical Wood Technology, Poznan University of Life Sciences, Poznan, Poland
  • ŁUKASIEWICZ Research Network – Institute of Wood Technology, Poznan, Poland
  • Institute of Chemical Wood Technology, Poznan University of Life Sciences, Poznan, Poland
  • Institute of Chemical Wood Technology, Poznan University of Life Sciences, Poznan, Poland
Bibliografia
  • Akhtar N., Gupta K., Goyal D., Goyal A. [2016]: Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environmental Progress and Sustainable Energy 35 [2]: 489-511
  • Bahadori A., Zahedi G., Zendehboudi S., Jamili A. [2014]: Estimation of the effect of biomass moisture content on the direct combustion of sugarcane bagasse in boilers. International Journal of Sustainable Energy 33 [2]: 349-356
  • Biedermann F., Obernberger I. [2005]: Ash-related problems during biomass combustion and possibilities for a sustainable ash utilization. Austrian Bioenergy Centre GmbH, Bios Bioenergiesysteme GmbH. Available from: http://www.bios-bioenergy.at/uploads/media/Paper-Biedermann-AshRelated-2005-10-11.pdf
  • Camire M.-E. [1998]: Chemical changes during extrusion cooking: recent advances. F. Shahidi, C.-T. Ho, N. van Chuyen (eds.), Process-induced chemical changes in food. Plenum Press, New York: 109-121.
  • Cichy W., Prądzyński W. [1995]: Możliwości spalania odpadów przemysłu tworzyw drzewnych z punktu widzenia energetyki i ekologii. Przemysł chemiczny 7: 43-46
  • Cuiping L., Chuangzhi W., Yanyongjie, Haitao H. [2004]: Chemical elemental characteristics of biomass fuels in China. Biomass and Bioenergy 27 [2]: 119-130
  • Czekała W., Pilarski K., Dach J., Janczak D., Szymańska M. [2012]. Analiza możliwości zagospodarowania pofermentu z biogazowni (Analysis of the possibilities of digestate utilization from biogas plant). Technika Rolnicza Ogrodnicza Leśna 4: 13-15
  • Domińczak-Kuderko A., Krzystek L., Ledakowicz S., Pogoda M. [2015]. Biologiczne suszenie mieszaniny masy pofermentacyjnej z biogazowni i organicznej frakcji stałych odpadów komunalnych (Biological drying of a mixture of postfermentation mass from a biogas plant and an organic fraction of municipal solid waste). Inżynieria i aparatura chemiczna 54 [4]: 150-151
  • Erakhrumen A.A. [2009]: Energy value as a factor of agroforestry wood species selectivity in akinyele and ido local government areas of Oyo State. Nigeria. Biomass and Bioenergy 33[10]: 1428-1434
  • Ferrer I., Ponsa S., Vazquez F., Font X. [2008]. Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochemical Engineering Journal 42 [2]: 186-192
  • Gravalos I., Kateris D., Xyradakis P., Gialamas T., Loutridis S., Augousti A., Georgiades A., Tsiropoulos Z. [2010]: A study on calorific energy values of biomass residue pellets for heating purposes. FORMEC 2010, Forest Engineering: Meeting the Needs of the Society and the Environment July 11-14, 2010, Padova – Italy
  • Gravalos I., Xyradakis P., Kateris D., Gialamas T., Bartzialis D. Giannoulis K. [2016]: An experimental determination of gross calorific value of different agroforestry species and bio-based industry residues. Natural Resources 7: 57-68
  • Günther B., Gebauer K., Barkowski W., Rosenthal M., Bues, C.-T. [2012]: Calorific value of selected wood species and wood products. European Journal of Wood and Wood Products 70 [5]: 755-757
  • Jędrczak A. [2008]: Biologiczne przetwarzanie odpadów (Biological waste treatment). Wydawnictwo Naukowe PWN, Warszawa
  • Karunanithy C., Muthukumarappan K. [2010]: Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Applied Biochemistry and Biotechnology 162 [1]: 264-279
  • Kataki S., Hazarika S., Baruah D.C. [2017]: Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient. Waste Management 59: 102-117
  • Kołodziejczyk G. [2012]. Możliwości wykorzystania potencjału energetycznego biogazu powstającego w trakcie procesu oczyszczania ścieków (Possibilities of using the energy potential of biogas generated during the wastewater treatment proces). Analiza opłacalności proponowanych rozwiązań. Nafta-Gaz 12: 1036-1043
  • Koszel M., Lorencowicz E. [2015]: Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agriculture and Agricultural Science Procedia 7: 119-124
  • Kucowski J., Laudyn D., Przekwas M. [1994]: Energetyka a ochrona środowiska (Energy and environmental protection). WNT, Warszawa.
  • Lewicki A., Pilarski K., Janczak D., Czekała W., Rodriguez Carmona P.C., Cieślik M., Witaszek K. [2013]: The biogas production from herbs and waste from herbal industry. Journal of Research and Applications in Agricultural Engineering 58 [1]: 114-117
  • Mohammad J.T., Keikhosro K. [2008]: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production. International Journal of Molecular Sciences 9 [9]: 1621--1651
  • Núnez-Regueira L., Proupin-Castineiras J., RodŕiguezAnon J.A. [2002]: Energy evaluation of forest residues originated from Eucalyptus globules Labill in Galicia. Bioresource Technology 82 [1]: 5-13
  • Patel B., Gami B. [2012]: Biomass characterization and its use as solid fuel for combustion. Iranica Journal of Energy and Environment 3: 123-128
  • Perez-Navarrete C., Betancur-Ancona D., Casotto M., Carmona A., Tovar J. [2007]: Effect of extrusion on protein and starch bioavailability in corn and lima bean flour blends. Archivos Latinoamericanos de Nutrición 57 [3]: 278-286
  • Pielhop T., Amgarten J., von Rohr P.R., Studer M.H. [2016]: Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnology for Biofuels 9: 152-164
  • Ray R.C., Mohapatra S., Panda S., Kar S. [2008]: Solid substrate fermentation of cassava fibrous residue for production of α-amylase, lactic acid and ethanol. Journal of Environmental Biology 29 [1]: 111-115
  • Sannigrahi P., Ragauskas A.J. [2011]: Characterization of fermentation residues from the production of bio-ethanol from lignocellulosic feedstocks. Journal of Biobased Materials and Bioenergy 5 [4]: 514-519
  • Schmatz M.J., Siqueira J.A.C., Nogueira C.E.C., Melegari de Souza S.N., Tokura L.K, Menezes K.L., Bentes dos Santos D. [2016]: Evaluation of the gross and net calorific value of residues of wood pine and araucaria from reforestation. African Journal of Agricultural Research 11 [41]: 4157-4161
  • Telmo C., Lousada J. [2011]: The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioenergy 35 [5]: 1663-1667
  • Wei Q., Xiuyi Y., Junhui Y., Yifei S., Wei W., Zhongzhi Z. [2011]. Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renewable Energy 36 [12]: 3313-3318
  • Zieminski K., Romanowska I., Kowalska M. [2012]: Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Management 32: 1131-1137
  • List of standards
  • DIN 38 414/S8:1985 Bestimmung des Faulverhaltens Schlamm und Sedimente, Beuth Verlag, Berlin
  • PN-81/G-04516 Paliwa stałe – Oznaczanie zawartości części lotnych metodą wagową (Solid biofuels – Determination of volatile matter content by gravimetric method)
  • PN-EN ISO 16948:2015-07 Biopaliwa stałe – Oznaczanie całkowitej zawartości węgla, wodoru i azotu (Solid biofuels – Determination of the total carbon, hydrogen and nitrogen content)
  • PN-EN ISO 16994:2015-06 Biopaliwa stałe – Oznaczanie zawartości siarki całkowitej i chloru (Solid biofuels – determination of total sulfur and chlorine content)
  • PN-ISO 1928:2002 Paliwa stałe – Oznaczanie ciepła spalania metodą spalania w bombie kalorymetrycznej i obliczanie wartości opałowej (Solid biofuels – Determination of combustion heat in a calorimetric bomb and calculation of calorific value)
  • T 211om-07 Ash in Wood, Pulp, Paper, and Paperboard: Combusti
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d82ea099-2d8c-49d1-b8d5-0af84dcde922
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.