Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Accurately predicting the forming limit (FL) of sheet metals between equi-biaxial tension (EBT) and uniaxial tension (UT) is a research focus in sheet metal forming field. However, up to now, there is still a lack of an uncoupled ductile fracture criterion (DFC) which not only can predict the FL of sheet metals between EBT and UT accurately but also can be easily extended to other DFCs for bulk and sheet metals, preventing embedding only one uncoupled DFC into finite element analysis (FEA) software to satisfy the application requirements of fracture initiation prediction within different stress state ranges. The aim of this paper is to address the issue. The problems encountered in recently developed DFCs are firstly revealed and then a new uncoupled DFC is presented according to the analyses of void evolution of sheet metals. To fully understand the proposed DFC, parametric studies are conducted. In addition, the proposed DFC and four recently developed DFCs are employed to forecast the FL strains of three different sheet metals and the extensibility of the proposed DFC is studied. Research results show that the proposed DFC can not only forecast the FL of various sheet metals between EBT and UT reasonably but can also be easily extended to a unified uncoupled DFC for bulk and sheet metals, enabling the implantation of one DFC into FEA software to meet the application requirements within different stress state ranges. Moreover, the capability of the presented DFC to forecast FL in actual forming process is also verified.
Czasopismo
Rocznik
Tom
Strony
art. e239, 1--15
Opis fizyczny
Bibliogr. 56 poz., il., tab., wykr., wzory
Twórcy
autor
- Beihang University, School of Mechanical Engineering and Automation, Beijing, China
- Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
autor
- Harbin Institute of Technology, School of Materials Science and Engineering, Harbin, China
autor
- Beihang University, School of Mechanical Engineering and Automation, Beijing, China
autor
- Beihang University, School of Mechanical Engineering and Automation, Beijing, China
Bibliografia
- 1. Liu W, Hao YG. Damage and fracture prediction of 7075 high strength aluminum alloy during cryogenic stamping process. Mech Mater. 2021;163:104080. https://doi.org/10.1016/j.mechmat.2021.104080.
- 2. Peng DP, Chen S, Darabi R, Ghabussi A, Habibi M. Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets. Arch Civ Mech Eng. 2021;21(2):1-13.
- 3. Hu Q, Zhang FF, Li XF, Chen J. Overview on the prediction models for sheet metal forming failure: necking and ductile fracture. Acta Mech Solida Sin. 2018;31:259-89.
- 4. Sheng ZQ, Mallick PK. A ductile failure criterion for predicting sheet metal forming limit. Int J Mech Sci. 2017;128-129:345-60. https://doi.org/10.1016/j.ijmec.sci. 2017.05.002.
- 5. Peng Z, Zhao HS, Li X. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality. Int J Plast. 2021;145:103057. https://doi.org/10.1016/j.ijplas. 2021.103057.
- 6. Jeong WJ, Kim CY, Lee CA, Bong HJ, Hong SH, Lee MG. A probabilistic mean-field and microstructure based finite element modeling for predicting mechanical and ductile fracture behavior of the cast aluminum alloy. Int J Plast. 2022;154:103299.
- 7. Rousselier G. Porous plasticity revisited: macroscopic and multiscale modeling. Int J Plast. 2021;136(4):102881. https://doi. org/10.1016/j.ijplas. 2020.102881.
- 8. Gurson AL. Continuum theory of ductile rupture by void nucleation and growth Part I: yield criteria and flow rules for porous ductile media. J Eng Mater-T Asme. 1977;99(1):2-15. https://doi.org/10.1115/1.34434 01.
- 9. Chu CC, Needleman A. Void nucleation effects in biaxially stretched sheets. J Eng Mater-T Asme. 1980;102(3):249-56. https://doi.org/10.1115/1.32248 07.
- 10. Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 1984;32:157-69. https://doi.org/10.1016/0001-6160(84) 90213-X.
- 11. Tvergaard V. On localization in ductile materials containing spherical voids. Int J Fracture. 1982;18:237-52.
- 12. Zhou J, Gao XS, Sobotka JC, Webler BA, Cockeram BV. On the extension of the Gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions. Int J Solids Struct. 2014;51:3273-91. https://doi.org/10.1016/j.ijsol str. 2014.05.028.
- 13. Xue L. Constitutive modeling of void shearing effect in ductile fracture of porous materials. Eng Fract Mech. 2008;75:3343-66. https:/doi.org/10.1016/j.engfracmech. 2007.07.022.
- 14. Malcher L, Andrade Pires FM, Cesar de Sa JMA. An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast. 2014;54(2):193-228. https://doi.org/10.1016/j.ijplas. 2013.08.015.
- 15. Ganjiani M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle. Eur J Mech A Solids. 2020;84:104048.
- 16. Brunig M, Gerke S, Schmidt M. Damage and failure at negative stress triaxi- alities: experiments, modeling and numerical simulations. Int J Plast. 2018;102:70-82. https://doi.org/10.1016/j.ijplas.2017. 12.003.
- 17. Khan AS, Liu HW. A new approach for ductile fracture prediction on Al 2024–T351 alloy. Int J Plast. 2012;35:1-12. https://doi.org/10.1016/j.ijplas. 2012.01.003.
- 18. Cao TS. Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review. Int J Mater Form. 2017;10:139-71. https://doi. org/10.1007/s12289-015-1262-7.
- 19. Freudenthal AM. The Inelastic Behavior in Solids. 1st ed. New York: Wiley; 1950.
- 20. Clift SE, Hartley P, Sturgess CEN, Rowe GW. Fracture prediction in plastic deformation processes. Int J Mech Sci. 1990;32:1-17. https:// doi.org/10.1016/0020-7403(90)90148-C.
- 21. Cockcroft MG, Latham DJ. Ductility and the workability of metals. J Inst Met. 1968;96:33-9.
- 22. Brozzo P, DeLuca B, Rendina R. A new method for the prediction of formability in metal sheets. In: Proceedings of the 7th Biennial Conference of IDDRG on Sheet Metal Forming and Formability 1972.
- 23. Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids. 1962;17:201-17. https://doi. org/10.1016/0022-5096(69) 90033-7.
- 24. Hashemi SJ, Moslemi Naeini H, Liaghat GH, Azizi TR. Prediction of bulge height in warm hydroforming of aluminum tubes using ductile fracture criteria. Arch Civ Mech Eng. 2015;15:19-29.
- 25. Dizaji SA, Darendeliler H, Kaftanoğlu B. Prediction of forming limit curve at fracture for sheet metal using new ductile fracture criterion. Eur J Mech A Solids. 2018;69:255–65. https://doi.org/10.1016/j.eurom echsol. 2018.01.003.
- 26. Xue L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int J Solids Struct. 2007;44:5163-81. https://doi.org/10.1016/j.ijsol str. 2006.12.026.
- 27. Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast. 2008;24:1071-96.
- 28. Bai Y, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture. Int J Fract. 2009;161:1-20. https://doi.org/10.1007/s10704-009-9422-8.
- 29. Li YN, Luo M, Gerlach J, Wierzbicki T. Prediction of shear-induced fracture in sheet metal forming. J Mater Process Tech. 2010;210(14):1858-69. https://doi.org/10.1016/j.jmatp rotec. 2010.06.021.
- 30. Qian LY, Paredesa M, Wierzbickia T, Sparrer Y, Feuerstein M, Zeng P, Fang G. Experimental and numerical study on shearpunch test of 6060 T6 extruded aluminum profile. Int J Mech Sci. 2016;118:205-18. https:// doi. org/ 10. 1016/j. ijmec sci. 2016. 09. 008.
- 31. Mohr D, Marcadet SJ. Micromechanically-motivated phenomenological Hosford Coulomb model for predicting ductile fracture initiation at low stress triaxialities. Int J Solids Struct. 2015;67-68:40-55. https:// doi.org/10.1016/j.ijsolstr. 2015.02.024.
- 32. Šebek F, Kubik P, Hůlka J, Petruška J. Strain hardening exponent role in phenomenological ductile fracture criteria. Eur J Mech A Solids. 2016;57:149-64. https:/doi.org/10.1016/j.eurom.echsol.2015.12.006.
- 33. Lou YS, Huh H, Lim S, Pack K. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int J Solids Struct. 2012;49:3605-15. https://doi.org/10.1016/j.ijsol str.2012.02.016.
- 34. Lou YS, Huh H. Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter. Int J Solids Struct. 2013;50(2):447-55. https://doi.org/10.1016/j.ijsol str.2012.10.007.
- 35. Lou YS, Yoon JW, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast. 2014;54(1):56-80. https://doi.org/10.1016/j.ijplas. 2013.08.006.
- 36. Lou YS, Chen L, Clausmeyer T, Tekkaya AE, Yoon JW. Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. Int J Solids Struct. 2017;112:169-84.
- 37. Hu Q, Li XF, Han XH, Chen J. A new shear and tension based ductile fracture criterion: Modeling and validation. Eur J Mech A Solids. 2017;66:370-86. https://doi.org/10.1016/j.euromechsol. 2017.8.005.
- 38. Mu L, Zang Y, Wang Y, Li XL, Stemler PMA. Phenomenological uncoupled ductile fracture model considering different void deformation modes for sheet metal forming. Int J Mech Sci.2018;141:408-23.
- 39. Quach H, Kim JJ, Nguyen DT, Kim YS. Uncoupled ductile fracture criterion considering secondary void band behaviors for failure prediction in sheet metal forming. Int J Mech Sci., 2020;169:105297. https://doi.org/10.1016/j.ijmec sci.2019.105297.
- 40. Zhang Z, Wu YQ, Huang FL. Extension of a shear-controlled ductile fracture criterion by considering the necking coalescence of voids. Int J Solids Struct. 2022;236-7:111324. https://doi.org/10.1016/j.ijsol str.2021.111324.
- 41. Zheng LH, Wang K, Jiang YY, Wan M, Meng B. A new ductile failure criterion for micro/meso scale forming limit prediction of metal foils considering size effect and free surface roughening. Int J Plast. 2022;157:103406. https://doi.org/10.1016/j.ijplas. 2022.103406.
- 42. Quach H, Kim YS. Effect of non-associated flow rule on fracture prediction of metal sheets using a novel anisotropic ductile fracture criterion. Int J Mech Sci. 2021;2021(195):106224.
- 43. Park N, Huh H, Yoon JW. Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial fracture strain. Int J Solids Struct. 2018;151:181-94. https://doi.org/10.1016/j.ijsol str. 2018.01.009.
- 44. Du R, Mareau C, Ayed Y, Giraud E, Santo PD. Experimental and numerical investigation of the mechanical behavior of the AA5383 alloy at high temperatures. J Mater Process Technol. 2020;281:116609. https://doi.org/10.1016/j.jmatprotec. 2020. 116609.
- 45. Kacem A, Laurent H, Thuillier S. Experimental and numerical investigation of ductile fracture for AA6061-T6 sheets at room and elevated temperatures. Int J Mech Sci. 2022;222:107201.
- 46. Ma BL, Liu ZG, Jiang Z, Wu XD, Diao KS, Wan M. Prediction of forming limit in DP590 steel sheet forming: an extended fracture criterion. Mater Des. 2016;96:401-8.
- 47. Samei J, Green DE, Cheng J, Lima MSDC. Influence of strain path on nucleation and growth of voids in dual phase steel sheets. Mater Des. 2016;92:1028-37. https://doi.org/10.1016/j.matdes.2015. 12.103.
- 48. Anderson TL. Fracture mechanics: fundamentals and applications. CRC Press 2017.
- 49. Achouri M, Germain G, Dal Santo P, Saidane D. Experimental characterization and numerical modeling of micromechanical damage under different stress states. Mater Des. 2013;50:207-22. https://doi.org/10.1016/j. matdes. 2013.02.075.
- 50. Dong JH, Kong DY, Zheng Z, Yang B, Elchalakani M. A dislocation-movement-and-void-growth-motivated ductile fracture criterion considering size effect. Int J Solids Struct. 2020;206(1):137-52. https://doi.org/10.1016/j.ijsolstr. 2020.09.013.
- 51. Mohamed A, Guenael G, Philippe DS, Delphine S. Experimental characterization and numerical modeling of micromechanical damage under different stress states. Mater Des. 2013;50:207-22. https://doi.org/10.1016/j.matdes. 2013.02.075.
- 52. Zheng LH, Wang ZJ, Wang Z. Characterizing forming limits at fracture for aluminum 6K21-T4 sheets using an improved biaxial tension/shear loading test. Int J Mech Sci. 2019;159:487-501. https://doi.org/10.1016/j.ijmecsci. 2019.05.033.
- 53. Bong HJ, Lee J, Hu XH, Sun X, Lee MG. Predicting forming limit diagrams for magnesium alloys using crystal plasticity finite elements. Int J Plast. 2020;126:102630. https://doi.org/10.1016/j.ijplas. 2019.11.009.
- 54. Qian LY, Fang G, Zeng P, Wang Q. Experimental and numerical investigations into the ductile fracture during the forming of flat-rolled 5083-O aluminum alloy sheet. J Mater Process Tech. 2015;220:264-75. https://doi.org/10.1016/j.jmatprotec. 2015.01.031.
- 55. Zheng LH, Wang ZJ, Meng B, Wan M. A unified ductile fracture criterion suitable for sheet and bulk metals considering multiple void deformation modes. Int J Plast. 2023;164:103572. https://doi.org/10.1016/j.ijplas. 2023.103572.
- 56. Peng LF, Xu ZT, Fu MW, Lai XM. Forming limit of sheet metals in meso-scale plastic forming by using different failure criteria. Int J Mech Sci. 2017;120:190-203. https://doi.org/10.1016/j.ijmecsci. 2016.11.021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d82d9077-ee72-4916-a310-7f008ab8f165
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.