PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Empirical and theoretical models for prediction of soil thermal conductivity: a review and critical assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses existing models used to estimate the thermal conductivity of the soil medium. The considerations are divided into three general sections. In the first section of the paper, we focus on the presentation of empirical models. Here, in the case of Johansen method, different relations for Kersten number are also presented. In the next part, theoretical models are considered. In the following part, selected models were used to predict measured thermal conductivities of coarse- and fine-grained soils, at different water contents. Based on these predictions as well as on the authors’ experience, a critical assessment of the existing models is provided. The remarks as well as advantages and disadvantages of those models are summarized in a tabular form. The latter is important from a practical point of view; based on the table content, one can simply choose a model that is suitable for the particular problem.
Słowa kluczowe
Wydawca
Rocznik
Strony
330--340
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Student of the Faculty of Civil Engineering of Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Chen S.X. (2008), Thermal conductivity of sands, Heat and Mass Transfer, 44(10), 1241.
  • [2] Côté J., Konrad J.M. (2005a), Thermal conductivity of base-course materials, Canadian Geotechnical Journal, 42(1), 61–78.
  • [3] Côté J., Konrad J.M. (2005b), A generalized thermal conductivity model for soils and construction materials, Canadian Geotechnical Journal, 42(2), 443–458.
  • [4] De Vries D.A. (1963), Thermal properties of soils, In Physics of plant environment, W.R. Van Wijk (Ed.), John Wiley & Sons, New York, 210–235.
  • [5] Donazzi F., Occhini E., Seppi A. (1979), Soil thermal and hydrological characteristics in designing underground cables, In Proceedings of the Institution of Electrical Engineers, Vol. 126, No. 6, 506–516, IET Digital Library.
  • [6] Dong Y., McCartney J.S., Lu N. (2015), Critical review of thermal conductivity models for unsaturated soils, Geotechnical and Geological Engineering, 33(2), 207–221.
  • [7] Eucken A. (1932), Heat transfer in ceramic refractory materials: Calculation from thermal conductivities of constituents, Fortchg. Gebiete Ingenieurw., B3, Forschungsheft, 16, 353–360.
  • [8] Farouki O.T. (1981), Thermal properties of soils (No. CRREL-MONO-81-1), Cold Regions Research and Engineering Lab Hanover NH.
  • [9] Gemant A. (1952), How to compute thermal soil conductivities, Heating, Piping, and Air Conditioning, 24(1), 122–123.
  • [10] Gori F. (1983), A theoretical model for predicting the effective thermal conductivity of unsaturated frozen soils, In Proceedings of the Fourth International Conference on Permafrost, Fairbanks (Alaska), Vol. 363.
  • [11] Haigh S.K. (2012), Thermal conductivity of sands. Geotechnique, 62(7), 617.
  • [12] He H., Zhao Y., Dyck M.F., Si B., Jin H., Lv J., Wang J.A. (2017), A modified normalized model for predicting effective soil thermal conductivity, Acta Geotechnica, 1–20.
  • [13] Johansen O. (1975), Thermal conductivity of soils (No. CRREL-TL-637), Draft English Translation 637. Doctoral thesis, University of Trondheim, Norwegia, Cold Regions Research and Engineering Lab Hanover NH.
  • [14] Kersten M.S. (1949), Laboratory research for the determination of the thermal properties of soils, Technical Report 23. Research Laboratory Investigations, Eng. Experiment Station, University of Minnesota, Minneapolis.
  • [15] Lu S., Ren T., Gong Y., Horton R. (2007), An improved model for predicting soil thermal conductivity from water content at room temperature, Soil Science Society of America Journal, 71(1), 8–14.
  • [16] Lu Y., Lu S., Horton R., Ren T. (2014), An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density, Soil Science Society of America Journal, 78(6), 1859–1868.
  • [17] Łydżba, D. (2011). Effective properties of composites: Introduction to Micromechanics. Wroclaw University of Technology, PRINTPAP, Wroclaw.
  • [18] Mickley A.S. (1951), The thermal conductivity of moist soil, Transactions of the American Institute of Electrical Engineers, 70(2), 1789–1797.
  • [19] Różański A. (2018), Multi-scale analysis of the thermal characteristics of a multiphase medium, (in Polish) Oficyna Wydawnicza Politechniki Wrocławskiej.
  • [20] Tarnawski V.R., Wagner B. (1992), A new computerized approach to estimating the thermal properties of unfrozen soils, Canadian Geotechnical Journal, 29(4), 714–720.
  • [21] Tarnawski V.R., Wagner B. (1993), Modeling the thermal conductivity of frozen soils, Cold Regions Science and Technology, 22(1), 19–31.
  • [22] Tong F., Jing L., Zimmerman R.W. (2009), An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow, International Journal of Rock Mechanics and Mining Sciences, 46(8), 1358–1369.
  • [23] Wiener O. (1912), Der Abhandlungen der Mathematisch- Physischen Klasse der Konigl, Sachsischen Gesellshaft der Wissenschaften, 32, 509–604.
  • [24] Zhang N., Wang Z. (2017), Review of soil thermal conductivity and predictive models, International Journal of Thermal Sciences, 117, 172–183.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d82ccf62-f844-49d8-bbff-d69f0e37cdc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.