PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the oxygen-containing functional group on the adsorption of hydrocarbon oily collectors on coal surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The oxygen-containing functional groups (OCFG) on the coal surface affect the adsorption effect of hydrocarbon oily collectors (HOC). An investigation of the interaction between the HOC and OCFG in the absence and presence of water is conducive to understanding the effect of OCFG type on the adsorption of HOC on the coal surface. In this paper, FTIR analysis was used to analyze the OCFG type of coal surface. The adsorption behavior of HOC on different OCFG surfaces was investigated using molecular dynamics simulation. The results indicated the presence of OCFG such as -OH, -COOH, -C=O, and -COCH3 on the coal surface. In conditions without water, the effect of OCFG on HOC adsorption capability follows the order -COOH > -C=O > -OH > -COCH3. In an aqueous solution, the effect of OCFG on HOC adsorption capability follows the order -C=O>-COCH3>-OH>-COOH. Moreover, the hydrophilicity of OCFG is the key factor that affects the adsorption effect of HOC. In other words, the adsorption effect of HOC on the coal surface in an aqueous solution does not depend on the strength of the interaction between the OCFG and HOC in the absence of water, but on the hydrophilicity of the OCFG. The -COOH and -OH on the coal surface are not conducive to the adsorption of HOC onto the coal surface. Masking the -COOH and -OH of the coal surface is beneficial in improving the coal flotation performance with HOC as a collector.
Rocznik
Strony
art. no. 149937
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
autor
  • School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Oulu Mining School, University of Oulu, Oulu, FI-90014, Finland
autor
  • School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Oulu Mining School, University of Oulu, Oulu, FI-90014, Finland
autor
  • School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
autor
  • School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
autor
  • College of Resource and Civil Engineering, Northeastern University, Shenyang, 110819, China
autor
  • School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Oulu Mining School, University of Oulu, Oulu, FI-90014, Finland
autor
  • School of Resources Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Bibliografia
  • ABARCA, C., ALI, M. M., PELTON, R. H, 2018. Choosing mineral flotation collectors from large nanoparticle libraries. J. Colloid. Interf. Sci., 516, 423-430.
  • AKYILDIRIM, O., GÖKCE, H., BAHÇELI, S., YÜKSEK, H., 2017. Theoretical and spectroscopic (FT-IR, NMR and UV–Vis.) characterizations of 3-p-chlorobenzyl-4-(4-carboxybenzylidenamino)-4, 5-dihydro-1H-1, 2, 4-triazol-5-one molecule. J. Mol. Struct., 1127, 114-123.
  • ALISKE, M. A., ZAGONEL, G. F., COSTA, B. J., VEIGA, W., SAUL, C. K., 2007. Measurement of biodiesel concentration in a diesel oil mixture. Fuel, 86(10-11), 1461-1464.
  • ALJERF, L., NADRA, R., 2019. Developed greener method based on MW implementation in manufacturing CNFs. International Journal of Nanomanufacturing, 15(3), 269-289.
  • CAI, Y., DU, M., WANG, S., LIU, L., 2018. Flotation characteristics of oxidized coal slimes within low-rank metamorphic. Powder. Technol., 340, 34-38.
  • CHENG, G., LI, Z., MA, Z., CAO, Y., SUN, L., JIANG, Z., 2019. Optimization of collector and its action mechanism in lignite flotation. Powder. Technol., 345, 182-189.
  • DEY, S., PAUL, G. M., PANI, S. (2013). Flotation behaviour of weathered coal in mechanical and column flotation cell. Powder. Technol., 246, 689-694.
  • FAN, G., ZHANG, M., PENG, W., ZHOU, G., DENG, L., CHANG, L., LI, P., 2021. Clean products from coal gasification waste by flotation using waste engine oil as collector: Synergetic cleaner disposal of wastes. J. Clean. Prod., 286, 124943.
  • GUO, X., HE, Y., WANG, J., ZHOU, R., 2022. Microscopic adsorption properties of methyl acrylate on lignite surface: Experiment and molecular simulation study. Colloid. Surface. A., 641, 128468.
  • HARRIS, G. H., DIAO, J., FUERSTENAU, D. W., 1995. Coal flotation with nonionic surfactants. Coal Perparation, 16(3-4), 135-147.
  • HE, J., LIU, C., YAO, Y., 2018. Flotation intensification of the coal slime using a new compound collector and the interaction mechanism between the reagent and coal surface. Powder. Technol., 325, 333-339.
  • HOSEINIAN, F. S., REZAI, B., KOWSARI, E., SAFARI, M., 2020. The effect of water recovery on the ion flotation process efficiency. Physicochem. Probl. Miner. Process., 56, 919-927.
  • JIA, R., HARRIS, G. H., FUERSTENAU, D. W., 2000. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int. J. Miner. Process., 58(1-4), 99-118.
  • LI, B., GUO, J., LIU, S., ALBIJANIC, B., ZHANG, L., SUN, X., 2020. Molecular insight into the mechanism of benzene ring in nonionic surfactants on low-rank coal floatability. J. Mol. Liq., 302, 112563.
  • LI, P., ZONG, Z. M., WEI, X. Y., WANG, Y. G., FAN, G. X., 2019. Structural features of liquefaction residue from Shenmu-Fugu subbituminous coal. Fuel, 242, 819-827.
  • LI, Y., XIA, W., PAN, L., TIAN, F., PENG, Y., XIE, G., LI, Y., 2020a. Flotation of low-rank coal using sodium oleate and sodium hexametaphosphate. J. Clean. Prod., 261, 121216.
  • LI, Y., XIA, W., PENG, Y., LI, Y., XIE, G., 2020b. Effect of ultrafine kaolinite particles on the flotation behavior of coking coal. International Journal of Coal Science & Technology, 7(3), 623-632.
  • LI, Y., XIA, W., PENG, Y., XIE, G., 2020c. A novel coal tar-based collector for effective flotation cleaning of low rank coal. J. Clean. Prod., 273, 123172.
  • LI, H., ZHANG, K., 2019. Dynamic behavior of water droplets impacting on the superhydrophobic surface: Both experimental study and molecular dynamics simulation study. Applied Surface Science, 498, 143793.
  • LIU, Z., XIA, Y., LAI, Q., AN, M., LIAO, Y., WANG, Y, 2019. Adsorption behavior of mixed dodecane/n-valeric acid collectors on low-rank coal surface: Experimental and molecular dynamics simulation study. Colloid. Surface. A., 583, 123840.
  • LIU, Q., YUAN, S., YAN, H., ZHAO, X., 201). Mechanism of oil detachment from a silica surface in aqueous surfactant solutions: molecular dynamics simulations. J. Phys. Chem. B., 116(9), 2867-2875.
  • LYU, X., YOU, X., HE, M., ZHANG, W., WEI, H., LI, L., HE, Q., 2018. Adsorption and molecular dynamics simulations of nonionic surfactant on the low rank coal surface. Fuel, 211, 529-534.
  • QU, J., TAO, X., TANG, L., XU, N., HE, H., 2015. Flotation characteristics and particle size distribution of micro-fine low rank coal. Procedia Engineering, 102, 159-166.
  • SUN, Y., HAN, Z., LIU, H., HE, S., YANG, L., LIU, J., 2015. Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid–liquid interface effects. Nanoscale, 7(15), 6619-6626.
  • TAN, J., CHENG, H., WEI, L., GUI, X., XING, Y., 2020. Investigation of CTAB and DBP esters on low-rank coal flotation selectivity. Energy. Source. Part. A., 42(10), 1225-1234.
  • WAN, H., YI, P., QU, J., BU, X., YANG, W., LI, H., 2021. Adsorption Behaviors of Straight-Chain Alkanes on a Molybdenite [001]/ [100] Surface: A Molecular Dynamics Study. Minerals, 11(5), 489.
  • WANG, C., XING, Y., XIA, Y., ZHANG, R., WANG g, S., SHI, K., GUI, X., 2021. Investigation of interactions between oxygen-containing groups and water molecules on coal surfaces using density functional theory. Fuel, 287, 119556.
  • WANG, J., HE, Y., PENG, Z., LING, X., WANG, S., 2017. Estimation of hydrophilicity of coals by using the quantum chemistry calculation. Int. J. Miner. Process., 167, 9-15.
  • WANG, Y., CAO, Y., LI, G., LIAO, Y., XING, Y., GUI, X., 2018. Combined effect of chemical composition and spreading velocity of collector on flotation performance of oxidized coal. Powder. Technol., 325, 1-10.
  • WU, Z., WANG, X., LIU, H., ZHANG, H., MILLER, J. D., 2016. Some physicochemical aspects of water-soluble mineral flotation. Adv. Colloid Interf., 235, 190-200.
  • XIA, W., LI, Y., NGUYEN, A. V., 2018. Improving coal flotation using the mixture of candle soot and hydrocarbon oil as a novel flotation collector. J. Clean. Prod., 195, 1183-1189.
  • XIA, W., NI, C., XIE, G., 2016. Effective flotation of lignite using a mixture of dodecane and 4-dodecylphenol (DDP) as a collector. Int. J. Coal. Prep. Util., 36(5), 262-271.
  • XIA, W., WU, F., JAISWAL, S., LI, Y., PENG, Y., XIE, G., 2021. Chemical and physical modification of low rank coal floatability by a compound collector. Colloid. Surface. A., 610, 125943.
  • XIA, W., YANG, J., LIANG, C., 2013. Improving oxidized coal flotation using biodiesel as a collector. International Int. J. Coal. Prep. Util., 33(4), 181-187.
  • XIA, Y., XING, Y., LI, M., LIU, M., TAN, J., CAO, Y., GUI, X., 2020a. Studying interactions between undecane and graphite surfaces by chemical force microscopy and molecular dynamics simulations. Fuel, 269, 117367.
  • XIA, Y., ZHANG, R., CAO, Y., XING, Y., GUI, X., 2020b. Role of molecular simulation in understanding the mechanism of low-rank coal flotation: A review. Fuel, 262, 116535.
  • XIA, Y., ZHANG, R., XING, Y., GUI, X., 2019. Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study. Fuel, 235, 687-695.
  • XIA, Y., YANG, Z., XING, Y., GUI, X., 2019. Molecular simulation study on hydration of low-rank coal particles and formation of hydration film. Physicochem. Probl. Miner. Process., 55, 586-596.
  • XIE, W., HAN, Y., TAI, S., 2017. Biodiesel production using biguanide-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles. Fuel, 210, 83-90.
  • XU, M., XING, Y., CAO, Y., GUI, X., 2019. Waste colza oil used as renewable collector for low rank coal flotation. Powder. Technol., 344, 611-616.
  • YANG, Z., LIAO, Y., REN, H., HAO, X., SONG, X., LIU, Z., 2021. A novel co-treatment scheme for waste motor oil and low rank coal slime: Waste dispose waste. Fuel, 292, 120275.
  • ZHANG, L., GUO, J., XIE, Z., LI, B., LIU, S., 2021a. Micro-mechanism of improving low-rank coal flotation by using carboxylic acid collector: A DFT calculation and MD simulation study. Colloid. Surface. A., 622, 126696.
  • ZHANG, L., GUO, J., HAO, M., LI, B., LIU, S. 2021b. Microscopic spreading characteristics of non-polar oil droplet on low rank coal surface: Effects of surfactant pretreatment and oxygen-containing groups. J. Mol. Liq., 325, 115232.
  • ZHANG, L., LI, B., XIA, Y., LIU, S., 2017. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study. J. Mol. Graph. Model., 76, 106-117.
  • ZHANG, L., SUN, X., LI, B., XIE, Z., GUO, J., LIU, S., 2020a. Experimental and molecular dynamics simulation study on the enhancement of low rank coal flotation by mixed collector. Fuel, 266, 117046.
  • ZHANG, R., XING, Y., XIA, Y., GUO, F., DING, S., TAN, J., GUI, X., 2020b. Synergistic adsorption mechanism of anionic and cationic surfactant mixtures on low-rank coal flotation. ACS omega, 5(32), 20630-20637.
  • ZHANG, R., XING, Y., XIA, Y., LUO, J., TAN, J., RONG, G., GUI, X., 2020c. New insight into surface wetting of coal with varying coalification degree: An experimental and molecular dynamics simulation study. Appl. Surf. Sci., 511, 145610.
  • ZHANG, W., XIA, W., 2015. The deashing of high-ash coking coal fines by flotation. Energy. Source. Part. A., 37(7), 714-720.
  • ZHOU, Y., ALBIJANIC, B., WANG, Y., YANG, J., 2018. Characterizing surface properties of oxidized coal using FTIR and contact angle measurements. Energy. Source. Part. A., 40(12), 1559-1564.
  • ZHU, D., MIAO, S., XUE, B., JIANG, Y., WEI, C., 2019. Effect of coal gasification fine slag on the physicochemical properties of soil. Water, Air, & Soil Pollution, 230(7), 1-11.
  • ZHU, X. N., WANG, D. Z., NI, Y., WANG, J. X., NIE, C. C., YANG, C., LI, L., 2020. Cleaner approach to fine coal flotation by renewable collectors prepared by waste oil transesterification. J. Clean. Prod., 252, 119822
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d82a8d63-3857-46c4-aec1-38e0a8d4e4df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.