Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an analysis of the stability of Timoshenko beams which uses Eringen'snonlocal elasticity theory. A numerical algorithm based on the exact solution for the freevibration of segmental Timoshenko beams was formulated. The algorithm enables one tocalculate, with any degree of accuracy, the critical load levels in the beams on the macro andnanoscale. The beams were subjected to conservative and nonconservative static loads. Thelevels of critical loads in the beams were analysed assuming a functional dependence of thenonlocal parameters on the vibrational frequency and the state of stress.
Czasopismo
Rocznik
Tom
Strony
1116--1126
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
autor
- Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, Wroclaw50-370, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, Wroclaw50-370, Poland
autor
- Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, Wroclaw50-370, Poland
Bibliografia
- [1] S.P. Timoshenko, On the transverse vibrations of bars ofuniform cross-section, London, Edinburgh, and Dublin,Philos. Mag. J. Sci. 43 (253) (1922) 125–131.
- [2] E.T. Kruszewski, National Advisory Committee forAeronautics, 1909. Effects of Transverse Shear and RotaryInertia on the Natural Frequencies of a Uniform Beam, 1949.
- [3] T. Huang, The effect of rotatory inertia and of sheardeformation on the frequency and normal mode equationsof uniform beams with simple end conditions, J. Appl. Mech.28 (4) (1961) 579–584.
- [4] G. Cowper, The shear coefficient in Timoshenko's beamtheory, J. Appl. Mech. 33 (2) (1966) 335–340.
- [5] H. Saito, K. Otomi, Vibration and stability of elasticallysupported beams carrying an attached mass under axialand tangential loads, J. Sound Vib. 62 (2) (1979) 257–266.
- [6] A. Kounadis, J.T. Katsikadelis, Shear and rotatory inertiaeffect on Beck's column, J. Sound Vib. 49 (2) (1976) 171–178.
- [7] T. Irie, G. Yamada, I. Takahashi, Vibration and stability ofnon-uniform Timoshenko beam subjected to a follower force,J. Sound Vib. 70 (4) (1980) 503–512.
- [8] V. Sundaramaiah, G. Venkateswara Rao, Stability of shortBeck and Leipholz columns on elastic foundation, AIAA J. 21(7) (1983) 1053–1054.
- [9] K. Sato, On the governing equations for vibration and stabilityof a Timoshenko beam: Hamilton's principle, J. Sound Vib.145 (2) (1991) 338–340.
- [10] P. Ruta, The application of Chebyshev polynomials to thesolution of the nonprismatic Timoshenko beam vibrationproblem, J. Sound Vib. 296 (2006) 243–263.
- [11] A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity, Int. J. Eng.Sci. 10 (1972) 233–248. http://dx.doi.org/10.1016/0020-7225(72)90039-0.
- [12] A.C. Eringen, Linear theory of nonlocal elasticity anddispersion of plane waves, Int. J. Eng. Sci. 10 (1972) 425–435.http://dx.doi.org/10.1016/0020-7225(72)90050-X.
- [13] A.C. Eringen, On nonlocal fluid mechanics, Int. J. Eng. Sci. 10(1972) 561–575. , http://dx.doi.org/10.1016/0020-7225(72)90098-5.
- [14] A.C. Eringen, On differential equations of nonlocal elasticityand solutions of screw dislocation and surface waves, J. Appl.Phys. 54 (1983) 4703–4710. http://dx.doi.org/10.1063/1.332803.
- [15] A.C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002.
- [16] R.D. Mindlin, Microstructure in linear elasticity, Arch. Ration.Mech. Anal. 10 (1964) 51–57.
- [17] R.D. Mindlin, Second gradient of strain and surface-tensionin linear elasticity, Int. J. Solid Struct. 1 (1965) 417–438. http://dx.doi.org/10.1016/0020-7683(65)90006-5.
- [18] B.S. Altan, E.C. Aifantis, On some aspects in the special theoryof gradient elasticity, J. Mech. Behav. Mater. 8 (1997) 231–282.
- [19] N.A. Fleck, J.W. Hutchinson, A reformulation of straingradient plasticity, J. Mech. Phys. Solid. 49 (2001) 2245–2271.http://dx.doi.org/10.1016/S0022-5096(01)00049-7.
- [20] L. Li, Y.L. Hu, Nonlinear bending and free vibration analysesof nonlocal strain gradient beams made of functionallygraded material, Int. J. Eng. Sci. 107 (2016) 77–97.
- [21] R.D. Mindlin, H. Tiersten, Effects of couple-stresses in linearelasticity, Arch. Ration. Mech. Anal. 11 (1962) 415–448.
- [22] R. Toupin, Elastic materials with couple-stresses, Arch.Ration. Mech. Anal. 11 (1962) 385–414.
- [23] A.R. Hadjesfandiari, G.F. Dargush, Couple stress theory forsolids, Int. J. Solids Struct. 48 (2010) 2496–2510.
- [24] H.M. Ma, X.L. Gao, J.N. Reddy, A microstructure-dependentTimoshenko beam model based on a modified couple stresstheory, J. Mech. Phys. Solids 56 (2008) 3379–3391.
- [25] M. Asghari, M.H. Kahrobaiyan, M.T. Ahmadian, A nonlinearTimoshenko beam formulation based on the modified couplestress theory, Int. J. Eng. Sci. 48 (2010) 1749–1761.
- [26] A.C. Eringen, Microcontinuum Field Theories: Foundationsand Solids, Springer, 1999.
- [27] C.M. Wang, Y.Y. Zhang, X.Q. He, Vibration of nonlocalTimoshenko beams, Nanotechnology 18 (2007) 105401.
- [28] M.A. Aydogdu, General nonlocal beam theory: its applicationto nanobeam bending buckling and vibration, Physica E 41(2009) 1651–1655.
- [29] H.T. Thai, A nonlocal beam theory for bending, buckling, andvibration of nanobeams, Int. J. Eng. Sci. 52 (2012) 56–64. http://dx.doi.org/10.1016/J.IJENGSCI.2011.11.011.
- [30] Q. Wang, K.M. Liew, Application of nonlocal continuummechanics to static analysis of micro and nanostructures,Phys. Lett. A363 (2007) 236–242.
- [31] C.M. Wang, S. Kitipornchai, C.W. Lim, M. Eisenberg, Beambending solutions based on non-local Timoshenko beamtheory, J. Eng. Mech. 134 (2008) 475–481.
- [32] S.P. Xu, An operational calculus-based approach to a generalbending theory of nonlocal elastic beams, Eur. J. Mech. A/Solids 46 (2014) 54–59.
- [33] K. Torabi, A. Jafarzadeh Jazi, E. Zafari, Exact closed formsolution for the analysis of the transverse vibration modes ofa Timoshenko beam with multiple concentrated masses,Appl. Math. Comput. 238 (2014) 342–357.
- [34] V. Senthilkumar, S.C. Pradhan, G. Prathap, Buckling analysisof carbon nanotube based on nonlocal Timoshenko beamtheory using differential transform method, Adv. Sci. Lett. 3(2010) 415–421.
- [35] F. Ebrahimi, P. Nasirzadeh, A nonlocal Timoshenko beamtheory for vibration analysis of thick nanobeams usingdifferential transform method, J. Theor. Appl. Mech. 53(2015) 1041–1052.
- [36] M. Janghorban, A. Zare, Freevibration analysis of functionallygraded carbon nanotubes with variable thickness bydifferential quadrature method, Physica E 43 (2011) 1602–1604.
- [37] T. Murmu, S.C. Pradhan, Buckling analysis of a single-walledcarbon nanotube embedded in an elastic medium based onnonlocal elasticity and Timoshenko beam theory and usingDQM, Physica E 41 (2009) 1232–1239.
- [38] S.A.M. Ghannadpour, B. Mohammadi, Buckling analysis ofmicro- and nano-rods/tubes based on nonlocal Timoshenkobeam theory using Chebyshev polynomials, Adv. Mater. Res.123–125 (2010) 619–622.
- [39] B. Mohammadi, S.A.M. Ghannadpour, Energy approachvibration analysis of nonlocal Timoshenko beam theory,Proc. Eng. 10 (2011) 1766–1771.
- [40] L. Behera, S. Chakraverty, Free vibration of Euler andTimoshenko nanobeams using boundary characteristicorthogonal polynomials, Appl. Nanosci. 4 (2014) 347–358.
- [41] C.M.C. Roque, J.M. Ferreira, J.N. Reddy, Analysis ofTimoshenko nanobeams with a nonlocal formulation andmeshless method, Int. J. Eng. Sci. 49 (2011) 976–984.
- [42] M. Hemmatnezhad, R. Ansari, Finite element formulation forthe free vibration analysis of embedded double-walledcarbon nanotubes based on nonlocal Timoshenko beamtheory, J. Theor. Appl. Phys. 7 (2013) 6.
- [43] P. Kasirajan, R. Amirtham, J.N. Reddy, Surface and non-localeffects for non-linear analysis of Timoshenko beams, Int. J.Non-Linear Mech. 76 (2015) 100–111.
- [44] M. Alves, P. Ribeiro, Non-linear modes of vibration ofTimoshenko nanobeams under electrostatic actuation, Int.J. Mech. Sci. 130 (2017) 188–202.
- [45] J.N. Reddy, Nonlocal theories for bending, buckling andvibration of beams, Int. J. Eng. Sci. 45 (2007) 288–307.
- [46] P. Lu, H.P. Lee, C. Lu, P.Q. Zhang, Application of nonlocalbeam models for carbon nanotubes, Int. J. Solids Struct. 44(2007) 5289–5300.
- [47] H. Heireche, A. Tounsi, A. Benzair, M. Maachou, E.A. AddaBedia, Sound wave propagation in single-walled carbonnanotubes using nonlocal elasticity, Physica E 40 (8) (2008)2791–2799.
- [48] C.M. Wang, Y.Y. Zhang, S. Sai Sudha Ramesh, Kitipornchai,Buckling analysis of micro- and nano-rods/tubes based onnonlocal Timoshenko beam theory, J. Phys. D: Appl. Phys. 39(2006) 3904–3909.
- [49] R. Ansari, M. Faghih Shojaei, V. Mohammadi, R. Gholami, H.Rouhi, Buckling and postbuckling of single-walled carbonnanotubes based on a nonlocal Timoshenko beam model,ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 95 (2015)939–951. http://dx.doi.org/10.1002/zamm.201300017.
- [50] G.F. Wang, X.Q. Feng, Timoshenko beam model for bucklingand vibration of nanowires with surface effects, J. Phys. D:Appl. Phys. 42 (2009) 155411.
- [51] S. Sahmani, R. Ansari, Nonlocal beam models for buckling ofnanobeams using state-space method regarding differentboundary conditions, J. Mech. Sci. Technol. 25 (2011) 2365–2375.
- [52] R. Ansari, V. Mohammadi, M. Faghih Shojaei, R. Gholami, S.Sahmani, Postbuckling analysis of Timoshenko nanobeamsincluding surface stress effect, Int. J. Eng. Sci. 75 (2014) 1–10.
- [53] J.D. Aristizabal-Ochoa, Large deflection and postbucklingbehavior of Timoshenko beam–columns with semi-rigidconnections including shear and axial effects, Eng. Struct.29 (2007) 991–1003.
- [54] Q. Wang, Wave propagation in carbon nanotubes vianonlocal continuum mechanics, J. Appl. Phys. 98 (2005)124301.
- [55] J. Yoon, C.Q. Ru, A. Mioduchwski, Timoshenko-beam effectson transverse wave propagation in carbon nanotubes,Composites B 35 (2004) 87–93.
- [56] N. Challamel, J. Lerbet, C.M. Wang, Z. Zhang, Analyticallength scale calibration of nonlocal continuum from amicrostructured buckling model, Z. Angew. Math. Mech. 92(5) (2013) 402–413. http://dx.doi.org/10.1002/zamm.201200130.
- [57] N. Challamel, Z. Zhang, C.M. Wang, Nonlocal equivalentcontinuum for the buckling and the vibrations ofmicrostructured beams, J. Nanomech. Micromech. 5 (1)(2015) A4014004, http://dx.doi.org/10.1061/(ASCE)NM.2153-5477.0000062.
- [58] W.H. Duan, C.M. Wang, Y.Y. Zhang, Calibration of nonlocalscaling effect parameter for free vibration of carbonnanotubes by molecular dynamics, J. Appl. Phys. 101 (2007)024305.
- [59] C.M. Wang, Z. Zhang, N. Challamel, W.H. Duan, Calibration ofEringen's small length scale coefficient for initially stressedvibrating nonlocal Euler Beams based on microstructuredbeam model, J. Phys. D: Appl. Phys. 46 (2013) 345501.
- [60] L.J. Sudak, Column buckling of multiwalled carbon nanotubesusing nonlocal continuum mechanics, J. Appl. Phys. 94 (2003)7281.
- [61] W. Glabisz, Stability of non-prismatic rods subjected to non-conservative loads, Comput. Struct. 46 (1993) 479–486.
- [62] S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability,McGraw-Hill, New York, 1963.
- [63] H.H.E. Leipholz, Stability Theory: An Introduction to theStability Problems of Elastic Systems and Rigid Bodies, JohnWiley and Sons, Stuttgard, 1987.
- [64] V.V. Bolotin, Nonconservative Problems of the Theory ofElastic Stability, Pergamon Press, Oxford, 1963.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d81da0ce-efad-48da-8261-c3c81f666cb8