PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation effect of the process parameters in mechanical comminution on ceramic materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the research results on the effect of crushing ceramic extinguishing chambers at different settings of the outlet slot size using a jaw crusher. The influence of the crusher outlet slot size on the crushing process parameters and the grain composition of the resulting product was analyzed, and the range of optimization of each parameter was determined. The problem of using ceramic material waste was solved. The research proved that the jaw crusher works well as a mechanical crushing method for obtaining a fraction of the product that can be used as a feedstock to produce ceramic materials. In this work, novelty crushing plates were used and crushing efficiency indices were obtained for different sizes of closed side setting outlet slots, which may be a contribution to future simulation studies.
Twórcy
  • Institute of Vehicles and Construction Machinery Engineering, Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
  • Institute of Ceramics and Building Materials, The Łukasiewicz Research Network, ul. Postępu 9, 02-676 Warsaw, Poland
  • Institute of Ceramics and Building Materials, The Łukasiewicz Research Network, ul. Postępu 9, 02-676 Warsaw, Poland
  • Institute of Vehicles and Construction Machinery Engineering, Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
autor
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Institute of Vehicles and Construction Machinery Engineering, Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
Bibliografia
  • 1. Esteem, P.L.; Ramalingam, V.V.; Kasi, R.K.; Ramasamy, P. Development and tribological characterization of semi-metallic brake pads for automotive applications. Arch. Automot. Eng. – Arch. Motoryz. 2023, 102, 5–25. doi:10.14669/AM/177327.
  • 2. Hevorkian, E.; Michalczewski, R.; Rucki, M.; Sofronov, D.; Osuch-Słomka, E.; Nerubatskyi, V.; Krzysiak, Z.; Latosińska, J.N. Effect of the sintering parameters on the structure and mechanical properties of zirconia-based ceramics. Ceram. Int. 2024, 50, 35226–35235. doi:10.1016/j.ceramint.2024.06.331.
  • 3. Szala, M.; Szafran, M.; Matijošius, J.; Drozd, K. Abrasive wear mechanisms of S235JR, S355J2, C45, AISI 304, and Hardox 500 steels tested using garnet, corundum, and carborundum abrasives. Adv. Sci. Technol. Res. J. 2023, 17, 147–160. doi:10.12913/22998624/161277.
  • 4. Pieniak, D. Badania porównawcze twardości knoo-pa wybranych światłoutwardzalnych materiałów polimerowych wykorzystywanych do wytwarzania części zapasowych pracujących w węzłach kinematycznych. Przem. Chem. 2023, 1, 132–137. doi:10.15199/62.2023.11.15.
  • 5. Rucki, M.; Hevorkian, E.; Ratov, B.; Mechnik, V. Study on properties of zirconia reinforced refractory matrix composites. May 22, 2024.
  • 6. Bogucki, M. Polioptymalizacja procesu wtryski-wania tworzyw termoplastycznych. Przem. Chem. 2021, 1, 39–43. doi:10.15199/62.2021.3.2.
  • 7. Szala, M.; Walczak, M.; Hejwowski, T. Factors influencing cavitation erosion of NiCrSiB hardfacings deposited by oxy-acetylene powder welding on grey cast iron. Adv. Sci. Technol. Res. J. 2021, 15, 376–386. doi:10.12913/22998624/143304.
  • 8. Özkan, D.; Yilmaz, M.A.; Karakurt, D.; Szala, M.; Walczak, M.; Bakdemir, S.A.; Türküz, C.; Sulukan, E. Effect of AISI H13 steel substrate nitriding on AlCrN, ZrN, TiSiN, and TiCrN multilayer PVD coatings wear and friction behaviors at a different temperature level. Materials 2023, 16, 1594. doi:10.3390/ma16041594.
  • 9. Michalczyk, J.; Gontarz, A.; Wiewiórowska, S.; Winiarski, G. Mandrel-free pipe bending on small radii – theoretical research and experimental tests. Adv. Sci. Technol. Res. J. 2023, 17, 189–205. doi:10.12913/22998624/169883.
  • 10. Walczak, M.; Świetlicki, A.; Szala, M.; Turek, M.; Chocyk, D. Shot peening effect on sliding wear in 0.9% NaCl of additively manufactured 17-4PH steel. Materials 2024, 17, 1383. doi:10.3390/ma17061383.
  • 11. Winiarski, G. New method for detecting flange fracture initiation in incremental radial extrusion. Materials 2024, 17, 1054. doi:10.3390/ma17051054.
  • 12. Derkacz, A.J.; Dudziak, A. Savings and investment decisions in the Polish energy sector. Sustainability 2021, 13, 553. doi:10.3390/su13020553.
  • 13. Adjei, K.; Opoku-Bonsu, K.; Asiamah, E.O. Utilization of cullets for the production of glass tiles through likn casting. J. Sci. Technol. Ghana 2017, 36, 124–133. doi:10.4314/just.v36i3.12.
  • 14. Li, J.; Liang, X.; Guo, Y.; Wang, Y.; Guo, S.; Li, W. Study on process and parameter optimization of selective laser sintering of SiC composite powder. Process. Appl. Ceram. 2023.
  • 15. Jakubiuk, T.; Łosiewicz, A. Development of technology for waste management created at the production of technical ceramics wares (in Polish). Szkło Ceram. 2018, 15–17.
  • 16. Jakubiuk, T.; Łosiewicz, A.; Taźbierski, P. Utilization of communal waste for ceramic catalyst production (in Polish). Sci. Works Inst. Ceram. Build. Mater. 2012, 78–88.
  • 17. Becker, M.; Schwedes, J. Comminution of ceramics in stirred media mills and wear of grinding beads. Powder Technol. 1999, 105, 374–381. doi:10.1016/S0032-5910(99)00161-8.
  • 18. Fladvad, M.; Onnela, T. Influence of jaw crusher parameters on the quality of primary crushed aggregates. Miner. Eng. 2020, 151, 106338. doi:10.1016/j.mineng.2020.106338.
  • 19. Johansson, M.; Bengtsson, M.; Evertsson, M.; Hulthén, E. A fundamental model of an industrial-scale jaw crusher. Miner. Eng. 2017, 105, 69–78. doi:10.1016/j.mineng.2017.01.012.
  • 20. Berrocal, K. Crushing and Screening Handbook 2016.
  • 21. Ozdemir, K. Evaluation of blast fragmentation effects on jaw crusher throughput. Arab. J. Geosci. 2021, 14, 2036. doi:10.1007/s12517-021-08426-z.
  • 22. Gao, W.; Ariyama, T.; Ojima, T.; Meier, A. Energy impacts of recycling disassembly material in residential buildings. Energy Build. 2001, 33, 553–562. doi:10.1016/S0378-7788(00)00096-7.
  • 23. Nagataki, S.; Gokce, A.; Saeki, T.; Hisada, M. Assessment of recycling process induced damage sensitivity of recycled concrete aggregates. Cem. Concr. Res. 2004, 34, 965–971. doi:10.1016/j.cemconres.2003.11.008.
  • 24. Noguchi, T.; Kitagaki, R.; Tsujino, M. Minimizing environmental impact and maximizing performance in concrete recycling. Struct. Concr. 2011, 12, 36–46. doi:10.1002/suco.201100002.
  • 25. Barbudo, A.; Agrela, F.; Ayuso, J.; Jiménez, J.R.; Poon, C.S. Statistical analysis of recycled aggregates derived from different sources for sub-base applications. Constr. Build. Mater. 2012, 28, 129–138. doi:10.1016/j.conbuildmat.2011.07.035.
  • 26. Pedro, D.; de Brito, J.; Evangelista, L. Influence of the use of recycled concrete aggregates from different sources on structural concrete. Constr. Build. Mater. 2014, 71, 141–151. doi:10.1016/j.conbuildmat.2014.08.030.
  • 27. Pasandín, A.R.; Pérez, I. Overview of bituminous mixtures made with recycled concrete aggregates. Constr. Build. Mater. 2015, 74, 151–161. doi:10.1016/j.conbuildmat.2014.10.035.
  • 28. Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.A.; Angulo, S.C.; John, V.M. Production of recycled sand from construction and demolition waste. Constr. Build. Mater. 2013, 40, 1168–1173. doi:10.1016/j.conbuildmat.2012.02.004.
  • 29. Zhao, Z.; Xiao, J.; Duan, Z.; Hubert, J.; Grigoletto, S.; Courard, L. Performance and durability of self-compacting mortar with recycled sand from crushed brick. J. Build. Eng. 2022, 57, 104867. doi:10.1016/j.jobe.2022.104867.
  • 30. de Brito Prado Vieira, L.; Domingues de Figueiredo, A.; John, V.M. Evaluation of the use of crushed returned concrete as recycled aggregate in ready-mix concrete plant. J. Build. Eng. 2020, 31, 101408. doi:10.1016/j.jobe.2020.101408.
  • 31. Assaad, J.J.; Vachon, M. Valorizing the use of recycled fine aggregates in masonry cement production. Constr. Build. Mater. 2021, 310, 125263. doi:10.1016/j.conbuildmat.2021.125263.
  • 32. Zhang, T.; He, Y.; Ge, L.; Fu, R.; Zhang, X.; Huang, Y. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries. J. Power Sources 2013, 240, 766–771. doi:10.1016/j.jpowsour.2013.05.009.
  • 33. Tam, V.W.Y.; Tam, C.M. Evaluations of existing waste recycling methods: A Hong Kong study. Build. Environ. 2006, 41, 1649–1660. doi:10.1016/j.buildenv.2005.06.017.
  • 34. Starek-Wójcicka, A.; Stoma, M.; Osmólska, E.; Rydzak, L.; Sobczak, P. Economic Effects of Food Industry Waste Management in the Context of Sustainable Development. In Farm Machinery and Processes Management in Sustainable Agriculture; Pascuzzi, S., Santoro, F., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, 2023; 289, 97–106.
  • 35. Bignozzi, M.C.; Saccani, A. Ceramic waste as aggregate and supplementary cementing material: a combined action to contrast alkali silica reaction (ASR). Cem. Concr. Compos. 2012, 34, 1141–1148. doi:10.1016/j.cemconcomp.2012.07.001.
  • 36. Briassoulis, D.; Hiskakis, M.; Babou, E. Technical specifications for mechanical recycling of agricultural plastic waste. Waste Manag. 2013, 33, 1516–1530, doi:10.1016/j.wasman.2013.03.004.
  • 37. Chang, F.-C.; Lee, M.-Y.; Lo, S.-L.; Lin, J.-D. Artificial aggregate made from waste stone sludge and waste silt. J. Environ. Manage. 2010, 91, 2289–2294, doi:10.1016/j.jenvman.2010.06.011.
  • 38. Gesoğlu, M.; Güneyisi, E.; Mahmood, S.F.; Öz, H.Ö.; Mermerdaş, K. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete. J. Hazard. Mater. 2012, 235–236, 352–358, doi:10.1016/j.jhazmat.2012.08.013.
  • 39. Guerra, I.; Vivar, I.; Llamas, B.; Juan, A.; Moran, J. Eco-efficient concretes: The effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Manag. 2009, 29, 643–646, doi:10.1016/j.wasman.2008.06.018.
  • 40. Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58, doi:10.1016/j.wasman.2017.07.044.
  • 41. Ballantyne, G.R.; Powell, M.S. Benchmarking comminution energy consumption for the processing of copper and gold ores. Miner. Eng. 2014, 65, 109–114, doi:10.1016/j.mineng.2014.05.017.
  • 42. Cleary, P.W.; Delaney, G.W.; Sinnott, M.D.; Cummins, S.J.; Morrison, R.D. Advanced comminution modelling: Part 1 – Crushers. Appl. Math. Model. 2020, 88, 238–265, doi:10.1016/j.apm.2020.06.049.
  • 43. Devasahayam, S.; Dowling, K.; Mahapatra, M.K. Sustainability in the Mineral and Energy Sectors; CRC Press/Taylor & Francis Group: Boca Raton, 2017.
  • 44. Legendre, D.; Zevenhoven, R. Assessing the energy efficiency of a jaw crusher. Energy 2014, 74, 119–130, doi:10.1016/j.energy.2014.04.036.
  • 45. Musa, F.; Morrison, R. A more sustainable approach to assessing comminution efficiency. Miner. Eng. 2009, 22, 593–601, doi:10.1016/j.mineng.2009.04.004.
  • 46. Tromans, D. Mineral comminution: Energy efficiency considerations. Miner. Eng. 2008, 21, 613–620, doi:10.1016/j.mineng.2007.12.003.
  • 47. Bearman, R.A.; Briggs, C.A.; Kojovic, T. The applications of rock mechanics parameters to the prediction of comminution behaviour. Miner. Eng. 1997, 10, 255–264, doi:10.1016/S0892-6875(97)00002-2.
  • 48. Briggs, C.; Evertsson, C.M. Shape potential of rock. Miner. Eng. 1998, 11, 125–132, doi:10.1016/S0892-6875(97)00145-3.
  • 49. Extractive Industry Geology Conference, W. Geoffrey, Ed.; Proceedings of the 14th Extractive Industry Geology Conference: Held at University of Edinburgh, June 2006; EIG Conferences: Great Britain, 2008; ISBN 978-0-9552346-1-3.
  • 50. Ulsen, C.; Antoniassi, J.L.; Martins, I.M.; Kahn, H. High quality recycled sand from mixed CDW – Is that possible? J. Mater. Res. Technol. 2021, 12, 29–42, doi:10.1016/j.jmrt.2021.02.057.
  • 51. Wills, B.A.; Finch, J.A. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery; 8th ed.; Elsevier: Amsterdam, 2016.
  • 52. Coutinho, Y.; Montefalco, L.; Carneiro, A. Influence of aggregate crushing on the results of accelerated alkali-silica reactivity tests. Constr. Build. Mater. 2022, 325, 126737, doi:10.1016/j.conbuildmat.2022.126737.
  • 53. King, R.P. Modelling and Simulation of Mineral Processing Systems; Butterworth-Heinemann: Boston, 2001.
  • 54. Beloglazov, I.I.; Ikonnikov, D.A. Computer simulation methods for crushing process in a jaw crusher. IOP Conf. Ser. Mater. Sci. Eng. 2016, 142, 012074, doi:10.1088/1757-899X/142/1/012074.
  • 55. Deepak, B.B.V.L.; Bahubalendruni, M.V.A.R. Numerical analysis for force distribution along the swing jaw plate of a single toggle jaw crusher. World J. Eng. 2017, 14, 255–260, doi:10.1108/WJE-07-2016-0025.
  • 56. Ghorbani, S.; Sharifi, S.; Ghorbani, S.; Tam, V.W.; de Brito, J.; Kurda, R. Effect of crushed concrete waste’s maximum size as partial replacement of natural coarse aggregate on the mechanical and durability properties of concrete. Resour. Conserv. Recycl. 2019, 149, 664–673, doi:10.1016/j.resconrec.2019.06.030.
  • 57. Gupta, A.; Yan, D.S. Mineral Processing Design and Operations: An Introduction, 2nd ed.; Elsevier: Amsterdam, 2016.
  • 58. Lindqvist, M.; Evertsson, C.M. Liner wear in jaw crushers. Miner. Eng. 2003, 16, 1–12, doi:10.1016/S0892-6875(02)00179-6.
  • 59. Luo, Z.H.; Li, S.H. Optimization design for crushing mechanism of double toggle jaw crusher. Appl. Mech. Mater. 2012, 201–202, 312–316, doi:10.4028/www.scientific.net/AMM.201-202.312.
  • 60. Martin, J.L.; Bidarte, U.; Cuadrado, C.; Ibanez, P. DSP-based board for control of jaw crushers used in mining and quarrying industry. In Proceedings of the 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. IEEE: Nagoya, Japan, 2000; 3, 2019–2024.
  • 61. Mu, F.S.; Li, H.; Li, X.X.; Xiong, H.Z. Jaw crusher based on discrete element method. Appl. Mech. Mater. 2013, 312, 101–105, doi:10.4028/www.scientific.net/AMM.312.101.
  • 62. Olaleye, B. Influence of some rock strength properties on jaw crusher performance in granite quarry. Min. Sci. Technol. China 2010, 20, 204–208, doi:10.1016/S1674-5264(09)60185-X.
  • 63. Refahi, A.; Mohandesi, J.A.; Rezai, B. Comparison between bond crushing energy and fracture energy of rocks in a jaw crusher using numerical simulation. J. South. Afr. Inst. Min. Metall. 2009, 109, 709–717.
  • 64. Sinha, R.; Mukhopadhyay, A. Failure rate analysis of jaw crusher using Weibull model. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2017, 231, 760–772, doi:10.1177/0954408916636922.
  • 65. Slobodianskii, M. Lifetime prediction for the jaw crusher by the criterion of toggle fatigue strength based on the application of the kinetic concept of material destruction. In Proceedings of the 7th International Conference on Industrial Engineering (ICIE 2021); Radionov, A.A., Gasiyarov, V.R., Eds.; Lecture Notes in Mechanical Engineering; Springer International Publishing: Cham, 2022; 83–91.
  • 66. Tomac, I.; Gutierrez, M. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM. J. Rock Mech. Geotech. Eng. 2017, 9, 92–104, doi:10.1016/j.jrmge.2016.10.001.
  • 67. Brzeziński, K.; Ciężkowski, P.; Bąk, S. Tricking the fractal nature of granular materials subjected to crushing. Powder Technol. 2023, 425, 118601, doi:10.1016/j.powtec.2023.118601.
  • 68. Austin, L.G. A commentary on the kick, bond and Rittinger laws of grinding. Powder Technol. 1973, 7, 315–317, doi:10.1016/0032-5910(73)80042-7.
  • 69. Bond, F.C. The third theory of comminution. Trans AIME 1952, 484–494.
  • 70. Hukki, R.T. Proposal for a Solomonic settlement between the theories of von Rittinger, Kick, and Bond. Trans AIME 1962, 403–408.
  • 71. Kick, F. Das Gesetz Der Proportionate Widerstände Und Seine Anwendung. Felix: Leipzig, Germany, 1885.
  • 72. Rittinger, R.P. Lehrbuch Der Aufbereitungskunde. Ernst Korn: Berlin, Germany, 1867.
  • 73. umpf, H. Problems of scientific development in particle technology, looked upon from a practical point of view. Powder Technol. 1977, 18, 3–17, doi:10.1016/0032-5910(77)85002-X.
  • 74. Ciężkowski, P.; Maciejewski, J. Study on load distribution in the working space of lever crusher. In Advances in Technical Diagnostics; Timofiejczuk, A., Łazarz, B.E., Chaari, F., Burdzik, R., Eds.; Applied Condition Monitoring; Springer International Publishing: Cham, 2018; 10, 253–265.
  • 75. Ciężkowski, P.; Maciejewski, J.; Bąk, S. Analysis of energy consumption of crushing processes – comparison of one-stage and two-stage processes. Stud. Geotech. Mech. 2017, 39, 17–24, doi:10.1515/sgem-2017-0012.
  • 76. Ciężkowski, P.; Maciejewski, J.; Bąk, S.; Kwaśniewski, A. Application of the new shape crushing plate in machine crushing processes. Stud. Geotech. Mech. 2020, 42, 83–96, doi:10.2478/sgem-2019-0029.
  • 77. PN-EN 933-1 Tests for geometrical properties of aggregates - Part 3: Determination of particle shape – Flakiness index, 2012.
  • 78. Ahmed, H.A.M.; Al-Maghrabi, M.-N.N.; Haffez, G.S.A. Energy assessment in mixture grinding of cement raw materials. Inż. Miner. 2007, 8, 1–14.
  • 79. Zhang, Y.M.; Napier-Munn, T.J.; Kavetsky, A. Application of comminution and classification modelling to grinding of cement clinker. Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 1988, 97, 207–214.
  • 80. Zawada, J.; Buczyński, A. On effectiveness of machine crushing processes. Przegląd Mech. 2008, 4, 34–39.
  • 81. Kruszelnicka, W.; Kasner, R.; Bałdowska-Witos, P.; Flizikowski, J.; Tomporowski, A. The integrated energy consumption index for energy biomass grinding technology assessment. Energies 2020, 13, 1417, doi:10.3390/en13061417.
  • 82. Malewski, J. Recycling services valuation of mineral waste processing in mobile crushing units. Wroclaw Univ. Sci. Technol. Fac. Geoengin. Min. Geol. 2011, 132.
  • 83. Lowrison, G.C. Crushing and Grinding: The Size Reduction of Solid Materials; Chemical Engineering Series; Butterworth: London, 1974.
  • 84. Köken, E. Evaluation of size reduction process for rock aggregates in cone crusher. Bull. Eng. Geol. Environ. 2020, 79, 4933–4946, doi:10.1007/s10064-020-01852-5.
  • 85. Kruszelnicka, W.; Idzikowski, A.; Adjei, K.; Kasner, R. Quality index of multi-disc grinding process of grainy biomass. Qual. Prod. Improv. - QPI 2019, 1, 503–511, doi:10.2478/cqpi-2019-0068.
  • 86. Schwechten, D.; Milburn, G.H. Experiences in dry grinding with high compression roller mills for end product quality below 20 microns. Miner. Eng. 1990, 3, 23–34, doi:10.1016/0892-6875(90)90078-P.
  • 87. Bondar, T.; Syomin, Y.; Syomina, A. Research of water-coal fuel preparation by the method of rational loading of ball mill. Teka Kom. Motoryz. Energ. Rol. 2011, 5–11.
  • 88. Syomin, Y.; Bondar, T. Theoretical study of the regularities of wet coal grinding in ball mills at the preparation of water-coal fuel. Teka Comm. Mot. Power Ind. Agric. 2014, 14, 296–304.
  • 89. Weiss, N.L. Jaw Crushers. In SME Mineral Processing Handbook; Weiss, N.L., Ed.; SME/AIME: New York, 1985.
  • 90. Brumercik, F.; Lukac, M.; Krzysiak, Z.; Krzywonos, L. Model of integrated transportation system. Communications - Scientific Letters of the University of Žilina 2017, 19(2), 23–26.
  • 91. Gola, A. Design and management of manufacturing systems. Appl. Sci. 2021, 11(5), 1–3, 2216.
  • 92. Barta, D.; Ishchuk, V.; Molnár, D.; Dižo, J. Structural Design of a Small Three-wheeled Vehicle for the Transport of Bulk Materials. 27th International Scientific Conference on Transport Means 2023, Palanga, Lithuania, 4-6.10.2023. Transport Means - Proceedings of the International Conference 2023, 1, 428–434.
  • 93. Blatnický, M.; Dižo, J.; Molnár, D.; Droździel, P. Design of a manipulator of a conveyor for bulk materials - calculation of the center of gravity of the conveyor. Sci. J. Sil. Univ. Technol., Series Transp. 2022, 117, 43–56.
  • 94. Caban, J.; Nieoczym, A.; Misztal, W.; Barta, D. Study of operating parameters of a plate conveyor used in the food industry. 4th International Conference of Computational Methods in Engineering Science, CMES 2019, Kazimierz Dolny, Poland, 21-23.11.2019. IOP Conf. Ser. Mater. Sci. Eng. 2019, 710, 1, 012020.
  • 95. Kurpanik, K.; Sławski, S.; Machoczek, T.; Woźniak, A.; Duda, S.; Kciuk, S. Assessment of the conveyor belt strength decrease due to the long term exploitation in harmful conditions. Adv. Sci. Technol. Res. J. 2024, 18(4), 1–11. https://doi.org/10.12913/22998624/187270.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d81c980f-ec1c-4c08-85f3-034660f723e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.