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1. Introduction 

Statistical analysis of results of lifetime tests has its 

over 50 years lasting history. In contrast to methods 

usually applied for the analysis of ordinary statistical 

data, in case of lifetime data we have to take into 

account such specific features like censoring of 

observations or the existence of covariates. First 

applications of this methodology were designed for the 

analysis of reliability data. However, starting from the 

1970’s their main field of applications is the survival 

analysis applied not only to technical objects, but to 

human beings as well. 

In classical textbooks on reliability it is always 

assumed that n independent objects (systems or 

components) are put on test, and in the ideal case of no 

censoring we observe the realizations of n independent 

and identically distributed (iid) random variables 

nT,,T 1 . When the lifetime test is terminated after the 

r-th observed failure, e.g. when we observe a 

predetermined number of failures r at times 

   rtt 1 , and the remaining n-r objects survive a 

random censoring time  rt , we have the case of the 

type-II censoring. On the other hand, when the lifetime 

test is terminated at the predetermined time Bt , and the 

number of observed failures is a random variable, we 

have the case of the type-I censoring. In more general 

models, we may also assume the cases of individual 

random censoring (when we observe random variables 

  n,,iC,TminX iii 1 , where n,,i,Ci 1  are 

random, and independent from n,,i,Ti 1  censoring 

times), multiple censoring (when for each subgroup of 

tested objects there exists a predetermined censoring 

time), or progressive censoring (when a predetermined 

number of objects are withdrawn from the test after 

each observed failure). The detailed description of 

these censoring schemes may be found in classical 

textbooks on the analysis of lifetime data, such as the 

book of Lawless [16]. 

Unfortunately, the practical applicability of well 

known methods is often limited to the case of precisely 

designed laboratory tests, when all important 

assumptions made by statisticians are at least 

approximately fulfilled. These tests provide precise 

information about lifetimes and censoring times, but 

due to the restricted (usually low) number of observed 

failures and/or the restricted test times, the accuracy of 

reliability estimation is rather low. Moreover, some 

types of possible failures may not be observed in such 

tests (e.g. due to their limited duration), and the 

obtained estimates of reliability may be overestimated. 

It is beyond any discussion that the most informative 

reliability data may come only from field experiments, 

i.e. from the exploitation of considered objects in real 

conditions. Unfortunately, we have very seldom 

statistical data that are obtained under field conditions 

and fit exactly to the well known theoretical models. 
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For example, test conditions are usually not exactly the 

same for all considered objects. Therefore, the random 

variables that describe their lifetimes are not 

identically distributed.  Another serious practical 

problem is related to the lack of precision in reported 

lifetime data. Individual lifetimes are often imprecisely 

recorded. For example, they are presented in a grouped 

form, when only the number of failures which occurred 

during a certain time interval is recorded. Sometimes, 

times to failures are reported as calendar times, and 

this does not necessarily mean the same as if they were 

reported as times of actual operation. Finally, 

reliability data that come from warranty and other 

service programs are not appropriately balanced; there 

exists more information related to a relatively short 

warranty time, and significantly less information about 

the objects, which survived that time. 

Statisticians who work with lifetime data have tried 

to build models that are useful for the analysis of field 

data. The majority of papers devoted to this problem 

are related to the methodology of dealing with data 

from warranty programs. These programs should be 

considered as the main source of reliability field data. 

Therefore, the presentation of the statistical problems 

of the analysis of warranty data shall be an important 

part of this paper. Some important mathematical 

models related to the analysis of warranty data are 

presented in the second section of this paper. In all 

these models it is assumed that all observations are 

described more or less precisely, and all necessary 

probability distributions are either known or evaluated 

using precisely defined statistical data. In many cases 

this approach is fully justified. However, close 

examination of real practical problems shows that in 

many cases available statistical data are reported 

imprecisely. We claim that making these data precise 

by force may introduce unnecessary errors. Therefore, 

we believe that in case of really imprecise data this fact 

should be taken into account in an appropriate way. In 

the third section of the paper we present the solution of 

some chosen practical problems when the input 

information is given in an interval form. These results 

are generalized in the fourth section to the case of 

fuzzy input data. Some conclusions and proposals for 

future investigations are presented in the last section of 

the paper. 

  

2. Mathematical models of reliability field data 

coming from warranty programs 

Lifetime data collected during precisely controlled 

laboratory test provide important, albeit limited, 

information about reliability of tested equipment. This 

limitation has different reasons. First, the number of 

tested units and/or the duration of a lifetime test are 

usually very limited due to economic constraints. 

Second, controlled laboratory conditions do not reflect 

real usage conditions. For this reason, for example, 

some of important types of failures cannot be revealed 

during the test. Finally, only field data can provide 

useful information about dependencies between 

reliability characteristics of tested units and specific 

conditions of exploitation. In contrast to laboratory 

lifetime data, reliability field data may yield much 

more interesting information to a manufacturer. 

Unfortunately, the information that is characteristic for 

laboratory data is seldom available in case of field 

data. First of all, warranty programs that serve as the 

main source of reliability field data are not designed to 

collect precise data. For example, reliability data are 

collected only from those items that have failed during 

the warranty period. Moreover, this period may not be 

uniquely defined. It is a common practice to define the 

warranty period both in calendar (for example, one 

year) and operational (for example, in terms of 

mileage) time. Therefore, in many practical cases 

reliability data are intrinsically imprecise. Also 

exploitation conditions, important for the correct 

assessment of reliability, are not precisely reported. All 

those problems, and many others, make the statistical 

analysis of reliability field data a difficult problem. 

Therefore, despite its practical importance, the number 

of statistical papers devoted to the analysis of 

reliability field data is surprisingly low. 

Statistical analysis of reliability field data coming 

from warranty programs can be roughly divided into 

two related, but distinct, parts: analysis of claims 

processes and the analysis of lifetime probability 

distributions. From the point of view of a manufacturer 

the most important information is contained in the 

description of the process of warranty claims. 

Comprehensive description of this type of analysis can 

be found in the papers by Lawless [17] and Kalbfleisch 

et al. [14]. In the analysis of claims processes statistical 

data are discrete, and are described by stochastic count 

processes like the Poisson process or its 

generalizations. By analysing count reliability data we 

can estimate such important characteristics as, e.g., the 

expected number of warranty claims during a specific 

period of time, the expected costs of such claims, etc. 

This type of information is extremely important for 

designing of warranty programs, planning of the 

supply of spare parts, and the evaluation of the 

efficiency of service activities, but does not yield 

precisely enough information about the intrinsic 

reliability characteristics of investigated units. 

Information of this type is much more useful for 

improving the quality on the design stage of a product, 

especially for the comparison of different solutions, 

etc.  

In this paper we limit the scope of our investigations 

to the statistical analysis of probability distributions of 



SSARS 2007   

Summer Safety and Reliability Seminars, July 22-29, 2007, Gdańsk-Sopot, Poland 

 

 183 

lifetimes. Throughout the paper we will denote by T 

the continuous random lifetime whose probability 

density function is denoted by  θx;|tf , where x is a 

vector of parameters (covariates) that describe 

exploitation conditions, and θ  is a vector of 

parameters that describe the lifetime distribution.   

 

2.1. Estimation from truncated lifetime data 
 

In case of the analysis of warranty data we often face 

situations when we observe both failure times 

,...i,ti 1  and corresponding vectors of covariates xi, 

,...i 1  are observed only for failed units. Let Tc  be a 

certain prespecified censoring time such that failures 

are observed only when ci TT  , where ,...i,Ti 1  

denote random variables describing lifetimes of failed 

units. If only lifetimes of failed units are available, and 

the form of the lifetime probability distribution is 

known, the statistical inference about parameters θ  

can be based on a truncated conditional likelihood 

function 
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where    θxθx ;|tTP;|tF  . This likelihood 

function arises from the conditional (truncated at time 

Tc) probability distribution of the random lifetime T. It 

is interesting to note, that the likelihood function (1) 

does not depend upon the number N of units in the 

considered population of tested items. Therefore, (1) is 

suitable for the estimation of θ  when this number is 

unknown. Moreover, in case of a low proportion of 

failed items, this likelihood function can be quite 

uninformative, as it was noticed by Kalbfleisch and 

Lawless [13]. They showed using computer 

simulations that the variance of the estimators of 

unknown parameters is substantially larger than in the 

case when some information about non-failed units is 

available. 

Estimation of θ  using the likelihood function (1) is 

rather complicated, even in simple cases. A 

comprehensive presentation of this problem can be 

found in the book by Cohen [2]. A relatively simple 

solution was proposed by Cohen [1] for the lognormal 

probability distribution of lifetimes, i.e. when 

logarithms of observed lifetimes are distributed 

according to the normal distribution. In this case the 

maximum likelihood estimators based on (1), and the 

moment estimators based on the first two moments 

coincide, but computation requires either special tables 

or the usage of numerical procedures. Cohen [1] 

considered a single left truncation at X0. In this case the 

kth sample moment is calculated from 
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For the estimation of the unknown parameters  and 
 

Cohen [1] proposed to use three first moments defined 

by (2). The obtained estimators can be calculated from 

the following simple formulae: 
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These formulae are derived for the left truncated 

sample. However, they can be applied in case of right 

truncated samples, in which case the odd moments are 

negative. The solution given by (3) and (4) is 

theoretically less efficient than the maximum 

likelihood estimators obtained from (1). However, Rai 

and Singh [21] have shown using extensive Monte 

Carlo simulations that there is no significant difference 

between these two methods. However, the efficiency 

of these estimators decreases, as expected, significantly 

when the percentage of truncated (i.e. not observed) 

lifetimes is larger than 30%. 

 

2.2. Estimation from censored lifetime data 

with full information about censored lifetimes 
 

In the previous subsection we considered the case 

when only the data from units failed prior to a certain 

time Tc are available. The situation when the 

information about non-failed units is available is well 

known as “censoring”. Following Hu and Lawless [9] 

let us present the general mathematical model of 

lifetime data. We consider population P consisting of 

n units described by their lifetimes, n.,i,ti 1 , 

random censoring times, n.,i,i 1 , and vectors of 

covariates n.,i,i 1z , respectively. Triplets 

 iii z,,t   are the realizations of a random sample from 

a distribution with joint probability function 

 

       qR,,t,,dG,;|tf  zzz 00  ,       (5) 

 

where lifetimes and censoring times are usually 

considered independent given fixed z, and  z,G   is 

an arbitrary cumulative distribution function. Let O be 

the set of m units for whom the lifetimes are observed, 

i.e. for whom n,,i,t ii 1 . The remaining n-m 
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units belong to the set C of censored lifetimes for 

whom only their censoring times i  and covariates iz  

are known. The function    zz ,;|tF,;|tS  1 , 

where  z,;|tF   is the cumulative distribution 

function of the lifetime, is called in the literature the 

survivor function or the survival function. The 

likelihood function that describes the lifetime data is 

now given by [9] 
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The special cases of (6) are well known, and 

comprehensively described in many reliability 

textbooks, such as an excellent book by Lawless [16]. 

However, they are rather well suited for the description 

of laboratory life tests, where all censoring times are 

known, and the values of covariates that describe test 

conditions are under control. In this paper we recall 

only those results, which in our opinion are pertinent to 

the analysis of field lifetime data. 

One of the features that distinguish reliability field 

tests from laboratory tests is the variety of test 

conditions. In the laboratory test these conditions are 

usually the same for all tested units. Only in case of 

accelerated lifetime these test conditions are different 

for different groups of tested units. In contrast to this 

situation, in reliability field tests usage conditions may 

be different for all tested units. Therefore, statistical 

methods that allow taking into account different test 

conditions are especially useful for the analysis of 

reliability field data. 

There exist two general mathematical models that 

link lifetimes to test conditions and are frequently used 

in practice: proportional hazard models, and location-

scale regression models. In the proportional hazard 

models the hazard function, defined as 

     zθzθzθ ,;tS/,;tf,;th  , is linked to the test 

conditions by the following equation 

 

        zz gth|th 0 ,         (7) 

 

where functions h0(.) and g(.) may have unknown 

parameters which have to be estimated from statistical 

data. Another representation of the proportional hazard 

model is the following: 
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z

g
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The most frequently used model is given by the 

following expression 

       zβ
z eth|th 0 ,         (9) 

 

where qqzz   11zβ , and ’s are unknown 

regression coefficients. This model was investigated by 

many authors. To give an illustration of its application 

let us recall the results given in Lawless [16] for the 

case of the Weibull distribution of lifetimes. 

The Weibull probability distribution is the most 

frequently used mathematical model of lifetime data. 

In the considered case of the proportional hazard 

model its survivor function is given by the following 

expression 

 

      




  zβ

z teexp|tS ,      (10) 

 

where >0 is the shape parameter, responsible for the 

description of the type of failure processes. If we use 

the transformation TlogY  , the logarithms of 

lifetimes are described by simple linear model 

 

   WY  zβ ,        (11) 

 

where , and the random variable W has a 

standard extreme value distribution with the 

probability density function    wexpwexp  . 

Suppose that n units are tested, and independent 

observations   n,,i,,x ii 1z  are available, where xi 

is either a logarithm of lifetime or logarithm of 

censoring time of the ith tested unit. Additionally 

suppose that exactly r failures are observed. If we 

apply the maximum likelihood methodology to this 

model, we arrive at the following set of equations [16]: 
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where   /zyx iii β . The solution of q+1 

equations given by (12) and (13) yields the maximum 

likelihood estimators of  (and hence for the shape 

parameter ), and regression coefficients q,,  1 . 

The formulae for the calculation of the asymptotic 

covariance matrix of these estimators can be found in 

[16]. 

A second regression model commonly used for the 

analysis of lifetimes is the location-scale model for the 

logarithm of lifetime T. In this model the random 

variable TlogY   has a distribution with the location 
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parameter  z , and a scale parameter , which does 

not depend upon the covariates z. This model can be 

written as follows: 

 

       zY ,       (14) 

 

where 0  and   is a random variable with a 

distribution that is independent on z. Alternative 

representation of this model can be written as 
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Both models, i.e. proportional hazard model and 

location-scale model, have been applied for different 

probability distributions of lifetimes. The detailed 

description of those results can be found, for example, 

in [16]. However, it is worth to note, that only in the 

case of the Weibull distribution (and the exponential 

distribution, which is a special case of the Weibull 

distribution) both models coincide. 

When the type of the lifetime probability 

distribution is not known and the proportional hazards 

model seems to be appropriate we can apply 

distribution-free methods for the analysis of lifetimes. 

Let (8) be of the form 

 

      zβz tS|tS 0 .       (16) 

 

Cox [5] proposed a method for the separation of the 

estimation of the vector of regression coefficients  

from the estimation of the survivor function S0(t). 

Suppose that the observed lifetimes are ordered as 

follows:    mtt 1 . Let   ii tRR   be the set of all 

units being at risk at time  it , that is the set of all non-

failed and uncensored units just prior to  it . Note, that 

in this model censoring times of the remaining n – m 

units may take arbitrary values. For the estimation of  

Cox  [5] proposed to use a pseudo-likelihood 

function given by 
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Slight modification of (17) has been proposed in 

Lawless [16]. This modification allows for few 

multiple failures at times   m,,i,t i 1 . Let Di be the 

set of units that fail at  it , di  be the number of those 

units, i.e |D|d ii  , and  


iDl li zΞ . The likelihood 

function is now given by [16] 
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The maximum likelihood estimators of the regression 

coefficients  are found from the following equations: 
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where ir  is the rth component in  iqii ,,  1Ξ . 

Formulae for the calculation of the asymptotic 

covariance matrix of these estimators are given in [16]. 

When the vector of the regression coefficients has 

been estimated,  we can use a distribution-free method, 

such as the Kaplan-Meier estimator [15], for the 

estimation of S0(t). 

 

2.3. Estimation from censored lifetime data 

with incomplete information about censored 

lifetimes 

In case of real field lifetime data the full information 

about the non-failed units is often unavailable, even in 

the case when there exists full and precise information 

about all failed units. Consider, for example, the data 

from warranty programs. Suppose that we do our 

analysis at a certain moment of time using the data 

(lifetimes and values of covariates) on all units that 

have failed by that moment. As we usually do not have 

information about the units which have not failed, we 

neither know their censoring times nor the values of 

their corresponding covariates. Moreover, we may also 

not know even the total number of units n. However, if  

even partial information about these units is available, 

it can be used for the improvement of the efficiency of 

estimation. This information may come, for example, 

from the follow-ups of certain units during the 

warranty period or monitoring of some units after their 

warranty has been expired. 

Suzuki [22], [23] was one of the first researchers 

who considered the case of incomplete information 

coming from field reliability data. In [23] he 

considered the case when a certain fraction p
*
 of units 

is additionally monitored during their warranty period. 

Thus, we have lifetimes of all units that have failed 

during the warranty period and all censoring times that 

do not failed during the warranty period but have been 

monitored. Under the assumption of random censoring 

times independent from random times to failure Suzuki 

[23] derived the maximum likelihood estimator of the 

survivor function S(t) that generalizes the estimator 

proposed by Kaplan – Meier [15]. In [22] Suzuki 

applied his methodology to find estimators of the 



Hryniewicz Olgierd 

Statistical analysis of interval and imprecise data – applications in the analysis of reliability field data 

 

 186 

parameters of such lifetime distributions like the 

exponential distribution or the Weibull distribution. 

Consider, for example, the exponential distribution 

with the survivor function     00  t,,texptS  . 

Let mt,,t 1  be the observed lifetimes of m failed units, 

and 
kt,,t 1  be the known censoring times of those k 

monitored units that have not failed during the 

warranty period. The censoring times of the remaining 

kmnnl   units that have not failed during the 

warranty period are unknown. The maximum 

likelihood estimator of the hazard rate is given as 

[22] 
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In the similar case of the Weibull distribution Suzuki 

[22] derived modified maximum likelihood equations. 

In [22] Suzuki considered also another problem 

related to the analysis of warranty data. In modern 

warranty systems the warranty “time” is often bi-

dimensional. For example, for newly sold cars 

warranties are defined both in terms of calendar time 

and mileage. Thus, failures that occurred during the 

calendar-time warranty period but after the moment 

when the maximum mileage had been exceeded are not 

reported. Formulae used for the calculation of 

respective estimators are more complicated in this 

case. A more general model, when the additional 

information about covariates is available, was 

considered by Kalbfleisch and Lawless [13]. 

The results of Suzuki [22], [23] originated the paper 

by Oh and Bai [20] who considered the case when 

monitoring of certain units taken randomly from the 

whole population of considered objects is monitored 

not only during a warranty period, but also during 

some after-warranty period. They assumed that: (i) 

each failure that occurs during a warranty period (0,T1] 

is reported with probability 1; (ii) each failure that 

occurs during an after-warranty period (T1,T2] is 

reported with probability p, and (iii) each unreported 

unit either fails during the after-warranty period but is 

not reported with probability 1-p or survives time T2. 

Let  θ;tf  be the probability density function of the 

lifetime, and  θ;tS  be the corresponding survivor 

function of the considered objects. We assume that the 

vector of parameters  is unknown, but we know 

probability p. In this case the log-likelihood function is 

given by [20] 
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where D1 is the set of units which failed during the 

warranty period (0,T1], D2 is the set of units failed and 

reported during the after-warranty period (T1,T2], and 

n3 is the number of units (both failed and not failed) 

not reported during (0,T2]. Maximum likelihood 

estimators of  can be found, as usual, by the 

maximization of (21). Oh and Bai [20] considered also 

a more difficult problem when the probability of 

revealing failures during the after-warranty period is 

unknown. To solve this problem they applied the EM 

maximum likelihood algorithm and proposed an 

iterative procedure for finding the estimators of . For 

both cases of known and unknown p Oh and Bai [20] 

calculated the asymptotic covariance matrix of the 

obtained estimators. Another approach was used by Hu 

et al. [11] who have found non-parametric estimators 

of the probability distribution of the time to failure f(t) 

when the additional information about the probability 

distribution of censoring times is available. Hu et al. 

[11] assumed that times to failure and censoring times 

are described by mutually independent discrete random 

variables and found moment and maximum likelihood 

estimators of f(t).  

The problem of two time scales mentioned in the 

paper by Suzuki [22] has attracted many researchers. 

The general discussion of the alternative time scales in 

modelling lifetimes is considered in the paper by 

Duchesne and Lawless [7]. In the considered in this 

paper context of the analysis of field reliability data 

this problem was considered by several authors. For 

example, Lawless et al. [18] considered the following 

linear transformation of the original calendar time t to 

an operational (usage) time u 

 

     0 t,ttu ii   ,       (22) 

 

where i   is a random usage rate described by the 

cumulative probability function  G .  Jung and Bai 

[12] have used this approach for the analysis of 

lifetime data coming from warranty programs when 

warranty periods were defined in two time scales (e.g. 

calendar time and mileage). The results of their 

computations are rather difficult for real applications, 

and cannot be applied without a specialized software. 

Moreover, this model requires the knowledge of  G , 

and this probability distribution is rarely known for 

practitioners. Another approach for solving this 
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problem was proposed by Jung and Bai [12] who 

described lifetime data by a bivariate Weibull 

distribution. They calculated a very complicated log-

likelihood function that can be used for the estimation 

of the parameters of this distribution when the data are 

reported both in calendar time and operational time. 

They showed an example where this approach may be 

more appropriate than the linear transformation model 

proposed by Lawless et al. [18]. 

Reliability field data may be collected and stored 

also in other forms that are far from those known in 

classical textbooks. Coit and Dey [3], and Coit and Jin 

[4] consider the case, typical for the collection of real 

reliability data, when data from different test programs 

are available in a form  rT,r , where r is the number 

of observed failures, and Tr is the cumulative time on 

test for the data record with r failures. Coit and Dey [3] 

considered the case when lifetimes are distributed 

according to the exponential distribution. They 

proposed the test for the verification of this 

assumption.  

Coit and Jin [4] considered a case when lifetimes are 

distributed according to the gamma distribution 

 

       0001    ,k,t,kettf tkk      (23) 

 

They considered the case typical for the analysis of 

field data for repairable objects, where a single data 

record consists of the number of observed failures and 

total time between those failures. Let Trj be the jth 

cumulative operating time for the data record with 

exactly r failures (Note, that no censoring is considered 

in this case); nr be the number of data records with 

exactly r failures; m be the maximum number of 

failures for any considered data record; M be the total 

number of observed failures, i.e.  
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 be the average time to failure. 

The maximum likelihood estimator of the shape 

parameter k can be found from the equation [4] 
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is the digamma function. The estimator of the 

parameter  is simply given by t/k̂ˆ  . 

Another type of reliability field data was considered 

in papers by Usher [24] and Lin et al. [19]. These 

authors considered the case of so-called masked data. 

This type of data is observed when lifetimes of whole 

systems are observed, but the exact cause of failure 

(i.e. a component that failed) can be isolated only to 

some subset of components. Unfortunately, the 

problem of estimation of lifetime characteristics has 

been solved only either in the case of two-component 

systems [24] or in the case when there exists additional 

prior information about reliability of considered 

components. 

 

2.4. Estimation of the failure rate from field 

data 

Hu and Lawless [10] considered the case when 

reliability data sets contain information not only on 

times to first failures, but also on times to consecutive 

failures if the observed units failed several times 

during a warranty period. In such cases, which are 

typical for the reliability analysis of repairable objects, 

the most frequently used model that describes the 

process of failures is a Poisson process characterized 

by a failure rate . When the failure rate varies in time 

the process of failures is called the non-homogeneous 

Poisson process, and the reliability characteristic of 

interest is the time-dependent failure rate  t . Hu and 

Lawless [10] considered parametric and non-

parametric estimation of  t  in two cases: when only 

data on failed units are reported (i.e. in case of data 

truncation, when the number of non-failed units is 

unknown), and when the population’s size and the 

distribution of individual censoring times are known. 

In the first case the estimator of the failure rate   t  

can be found iteratively. In the second case the 

complexity of computations depends on the amount of 

knowledge about the population size and the 

distribution of censoring times. 

 

3. Statistical analysis of reliability field data 

with incomplete interval-type information 

In the previous section we have presented different 

mathematical models that can be used for the analysis 

of reliability field data. This type of lifetime data is in 

general more difficult to analyse using classical 

statistical methods. What is typical to field data is the 

existence of missing, unobserved or imprecisely 

reported data. If we want to analyse such data using a 

thorough statistical approach we immediately are in 

troubles. First of all, additional statistical information 

is needed which is necessary for the description of 

missing or imprecisely reported data in terms of the 
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theory of probability. For example, if lifetime data are 

imprecisely reported due to the unknown delay time, 

see [17] for the description of the problem, the 

probability distribution of the delay time has to be 

identified using independent investigation. The same 

problem arises when we need to know the usage rate. 

The probability distribution of i  in (22) has to be 

estimated even in the case when there exist doubts 

whether such unique distribution ever exists. Another 

group of problems arises even in those cases when the 

additional information is available. Mathematical 

models used for the estimation of reliability 

characteristics become very complicated, and in many 

cases are rather intractable for an average user. 

Specialized software is needed, and this software is 

rarely commercially available. In all these and similar 

cases there exists, however, additional imprecise 

information about possible values of the quantities of 

interest. This information may be expressed in a form 

of intervals of possible values of model parameters or 

values of imprecisely reported observations. It has to 

be noted that this type of the representation of 

imprecision is not equivalent to the assumption that 

quantities with unknown or imprecisely reported 

values are uniformly distributed on those intervals. The 

interpretation of these intervals should be rather made 

in the spirit of the classical theory of measurement. If 

such unknown or imprecisely reported quantity is 

represented by the interval of its possible values it may 

be understood as if that value could be represented by 

any probability distribution defined over such interval. 

Thus, the application of interval data yields both 

pessimistic and optimistic bounds for the reliability 

characteristics of interest. In this section we present 

some examples of the usage of this approach in dealing 

with reliability field data. 

Let us begin with the simplest model of life data. 

Suppose that M units are tested during a fixed time 

period T0. Let mt,,t 1  be the observed times of m 

reported failures. The failures of the remaining M-m 

units have not been reported by the time T0, and we 

assume that for these units T0 is their censoring time. 

As usual, we assume that  θ;tf  is the density 

function of the time to failure, and  is a vector of its 

unknown parameters. The maximum likelihood 

estimators of  can be found by the maximization of 

the log-likelihood function 

 

           



m

i

i ;TSmM;tflogL
1

0 θθθ ,    (27) 

 

where    00 TTP;TS θ  is the survivor function. 

The problem stated above is a classical statistical 

problem extensively investigated for numerous 

probability distributions of lifetimes. Consider now its 

more realistic version. First of all let us assume that the 

reported failure times Ti do not represent real failure 

times due to some random delay. For example, a 

transmission leakage in a car may be reported after a 

visit to a service centre, and not after observing its first 

signs on a garage floor [21]. Let Di be a random delay 

time. Hence, the real time to failure is described by an 

unobserved random variable. Note however, that even 

if observed lifetimes Ti are distributed according to a 

well known probability distribution, e.g. the Weibull 

distribution, then the distribution of Xi may be 

completely different, even when the distribution of 

delays Di is known. In real situation the distribution of 

Di is usually very difficult to estimate, so the 

derivation of a more or less precise probabilistic model 

for the description of Xi is usually hardly possible. The 

existence of delays in the reporting of failures may 

cause additional complication. As a matter of fact we 

may not be sure if all failures have been reported by 

the censoring time T0. We do not consider this 

possibility in our model, as its thorough description 

seems to be very complicated. Now, let us consider 

another serious problem with the analysis of reliability 

field data. In the majority of practical cases reliability 

engineers are rather not interested in the description of 

reliability in terms of calendar time, but in terms of 

operational or usage time. In the previous section we 

discussed some basic problems that arise when we 

want to model this situation. Even in the simplest case 

of a linear transformation of a calendar time to a usage 

time we have to know the daily usage rate Ui that is a 

random variable whose distribution is very difficult to 

estimate. In practice this can be done only for products 

like cars when the usage time is continuously 

monitored in an automatic way. In all other practical 

situations the usage rate may be only estimated from 

imprecise statements of users. Let Zi be the lifetime in 

terms of usage time. Then we have   iiii UDTZ  . 

In face of all difficulties mentioned above the 

derivation of the probability distribution of Zi seems to 

be hardly possible. Finally, let us notice that different 

usage rates influence the values of censoring times of 

non-failed units. These censoring times are now the 

realizations of a random variable Z0=T0U, where U 

represents a random usage rate for non-failed units. It 

is quite obvious that this distribution can be estimated 

either using expert opinions or from a specially 

designed statistical experiment. 

The discussion presented above shows quite clearly 

that even in the simplest case of the analysis of real 

field data the precise mathematical description of the 

problem becomes very difficult or even mathematically 

intractable. However, we still have to analyse the data 

in the form they are available to us. Therefore, there is 

a need to propose approximate methods that should be 
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simple enough in order to be applied in practice. In this 

section of the paper we propose to represent our lack of 

knowledge in terms of intervals representing the values 

of considered characteristics or quantities. 

In order to simplify further notation let us denote by 

x a compact interval [xmin,xmax]. The lack of 

knowledge about the precise value of the time to a real 

failure let us describe by assuming that the real time to 

failure takes place in the interval ti, where ti,max is 

equal to the reported failure time ti. Similarly, we 

assume that the usage rate for each observed failed unit 

is described by the interval ui, and the usage rate for 

all censored unit belongs to the interval u. Hence, we 

can calculate the interval the usage time to a failure 

belongs to. This can be done using the rules of simple 

interval arithmetics; the lower bound of the interval zi 

is equal to min,imin,imin,i utz  , and the upper bound is 

given by max,imax,imax,i utz  . Similarly, the lower bound 

for the usage censoring time is given by 

minmin, uTZ 00  , and the upper bound by 

maxmax, uTZ 00  . We should also make the assumption 

that the probability distribution of lifetimes belongs to 

a certain class of probability distributions. This 

assumption is a crucial one, as strictly speaking this 

distribution is different from that which describes 

observed times to failures measured in the calendar 

time. However, when the intervals of interest are not 

very wide this assumption seems to be practically 

acceptable. 

In the next step of our analysis we calculate a 

multivariate interval  maxmin ,θθθ   that describes 

the estimated values of . Lower and upper bounds of 

 can be found by solving two optimisation problems. 

 

     θθ
θ

Lmaxarginf
ZZ,zz

min

ii 00  

      (28) 

 

     θθ
θ

Lmaxargsup
ZZ,zz

max

ii 00  

 ,        (29) 

 

where  θL  is the log-likelihood function given by 

 

           



m

i

i ;ZSmM;zflogL
1

0 θθθ .    (30) 

 

The optimisation problem defined by (28) – (29) 

may be, in a general case, difficult, as the interval 

computations for non-linear functions are usually time 

consuming. However, in some practical cases the 

optimisation problem may be significantly simplified. 

In the case of the exponential distribution the lower 

and upper bound for the hazard rate  are given by 

simple formulae 

  max,

m

i

max,i

min

ZmMz

m

0

1








      (31) 

 

  min,

m

i

min,i

max

ZmMz

m

0

1








 .     (32) 

 

Unfortunately, in the case of the Weibull distribution 

the interval for the possible estimated values of the 

shape parameter  cannot be calculated using 

separately lower and upper bounds for observed 

lifetimes and censoring times. Only the bounds for the 

scale parameter (or its reciprocal) can be calculated in 

such a way. In general, simple computations are 

possible only then if a lifetime distribution is of a 

location-scale type. In such a case, the bounds for a 

location parameter can be calculated using lower and 

upper bounds for lifetimes and censoring times 

separately. 

Let us consider now another relatively simple 

example of a practical application of the interval 

approach in the analysis of reliability field data. In 

section 2.2 of this paper we presented a mathematical 

model of lifetimes when the probability distribution of 

these random variables depends also on certain 

covariates, which describe usage conditions. These 

conditions may be described by a vector of covariates 

z, and the dependence of lifetimes on these covariates 

may be described by different mathematical models. 

Assume now, that this dependence is described by the 

proportional hazard model defined by equations (7) – 

(9). In this model probability distribution of lifetimes 

depends on the values of covariates via 

qqzz   11zβ , where ’s are unknown 

regression coefficients. Estimation of these coefficients 

in the proportional hazard model was proposed by Cox 

[5], and is briefly presented in section 2.2. 

In case of reliability field experiments each 

investigated unit may be used in different conditions. 

Theoretically, these conditions may be defined quite 

precisely, and described by real numbers. However, in 

practice it is much more convenient to describe usage 

conditions by categorical variables. In such a case each 

covariate p,,j,z j 1  may adopt only a finite 

number of possible values jl,j n,,l;p,,j,z  11  . 

If the set of these values can be identified for each of k 

failed units we can find the estimators of  by solving 

equations (19). However, in certain circumstances the 

users may face difficulties with a precise identification 

of the values of covariates z. Let us suppose, for 

example, that exploitation conditions vary in time, and 

it is not obvious whether these conditions should be 
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labelled as moderate or severe. In such situation the 

necessity to choose only one value of the covariate that 

describes the severity of exploitation conditions may 

distort a final reliability analysis. Introduction of 

another probabilistic model for the description of this 

situation may be too difficult from a practical point of 

view. Therefore, it seems to be much more convenient 

to use a set-valued description of the considered 

covariates. In case of covariates described by real 

numbers we can directly use the notation introduced 

previously, i.e.   p,,j,z,zz max,jmin,jj 1 . 

However, we also can use this notation in case of 

ordered categorical data. Let be a multivariate 

interval that describes the estimated values of the 

regression coefficients in the presence of interval 

data m,,i,i 1z , where m is the number of 

observed failures. The lower and upper bounds for 

can be found by solving the optimisation problems 

  

     ββ
β

Lmaxarginf
ii zz

min


       (33) 

 

    ββ
β

Lmaxargsup
ii zz

max


  ,         (34) 

 

where  βL  is the log-likelihood function given by 

(18).  

The solution of (33) – (34) is, in general, difficult. 

However, in many cases the dependence of reliability 

upon covariates has a monotonic nature. In this case 

the lower and upper bounds of  defined by (33) – (34) 

may be found using appropriately chosen (depending 

on the direction of the dependence) boundary values of  

m,,i,i 1z . 

The limited volume of this paper allows us to 

present only a general description of relatively simple 

models for the analysis of reliability field data. These 

models are more complicated than the simplest lifetime 

models, but are applicable in such cases when a proper 

probabilistic analysis of reliability field data is either 

very difficult or even impossible. In order to overcome 

these problems we have to deal with some information 

of subjective nature. This is the price we have to pay if 

we want to solve more realistic problems. 

 

4. Statistical analysis of reliability field data 

with imprecise fuzzy information 

In the previous section we considered the case when 

the information which is necessary for a proper 

evaluation of reliability in terms of the theory of 

probability and mathematical statistics may be 

incomplete and imprecise. Our lack of full information 

we represented in terms of intervals describing the 

quantities of interest. Representation of uncertainty by 

intervals has its origins in the theory of measurement. 

If no additional information is present, this 

methodology allows the calculation of the bounds for 

reliability characteristics of interest. These bounds may 

be interpreted as “the worse” and “the best” possible 

values which take into account any type of variability 

of imprecisely or partially known values of field 

lifetime data. However, one can argue that this type of 

representation of uncertainty may not reflect the 

complexity of available information. For example, let 

us suppose that the daily usage rate of certain 

equipment is reported by its user as “about five hours a 

day”. From further inquiry one may get information 

that it means “between four and six hours a day”. Note, 

that this information does not tell anything about the 

way the usage rate varies in time. Therefore, the 

representation of uncertainty in a form of an interval 

seems to be quite appropriate. On the other hand, it is 

easy to note that the original information, “about five 

hours a day”, carries additional information. One may 

believe that the real usage rate is more often closer to 

five hours than to any other number of hours. This still 

vague information, which does not allow building any 

probability distribution, may be described formally 

using the theory of fuzzy sets introduced by Lotfi A. 

Zadeh[25]. 

Fuzzy sets are the generalization of ordinary sets. In 

order to define a fuzzy set we have to specify a so 

called universe of discourse X, i.e. an ordinary set that 

contains all elements that are relevant for the 

description of a vaguely defined (or described) object. 

In the considered in this paper reliability context it 

might be a set (or a subset) of positive real numbers, 

when we describe the usage rate, a set of integers, 

when we describe a partially known number of units 

on test, or a set of labels, when we describe the 

severity of working conditions. A membership function 

 10,X:A   such that  xA  tells us to which 

degree an element Xx  belongs to the fuzzy set A, is 

the second part of the definition of a fuzzy set. Thus, a 

fuzzy set A in a universe of discourse X is a set of pairs  

 

      x,xA A        (35) 

 

This formalism is very useful for the description of 

vague and imprecise concepts, as the value of the 

membership function    10,xA   describes our 

degree of belief that the value x describes the 

considered concept. 

Each fuzzy set has a unique representation in terms 

of so called -cuts, or -level sets. The ordinary (non-

fuzzy) set     x:XxA A , for each  10, , 

is called the -cut of the fuzzy set A, and the set of all 

-cuts uniquely defines this fuzzy sets. 
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When the universe of discourse is represented by the 

set of real numbers we can generalize the concept of a 

real number and define a fuzzy number. The fuzzy 

subset A of the real line R, with the membership 

function  10,R:A   is a fuzzy number iff 

a) A is normal, i.e. there exists an element x0 

such that   10 x ; 

b) A is fuzzy convex, i.e. 

      2121 1 xxxx AAA   , 

 1021 ,,x,x  R ; 

c) A  is upper semi-continous; 

d) supp A is bounded. 
From the definition given above one can easily find 

that for any fuzzy number A there exist four real 

numbers a1, a2, a13, a4 and two functions: non-

decreasing function  10,:A R , and non-increasing 

function  10,:A R , such that the membership 

function A  is given by 
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                     (36) 

Functions A  and A  are called the left side and the 

right side of a fuzzy number A, respectively. A special, 

and very useful in practice, case of a general fuzzy 

number is a trapezoidal fuzzy number defined by the 

following membership function 
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      (37) 

 

Note, that real-valued intervals considered in the 

previous section of this paper can be looked upon as 

trapezoidal fuzzy numbers for which minxxx  21 , 

and maxxxx  43 . 

Membership functions of fuzzy numbers that are 

defined as functions of other fuzzy numbers may be 

calculated using the following extension principle 

introduced by Zadeh, and described in Dubois and 

Prade [6] as follows: 

  Let X be a Cartesian product of 

universe rXXXX  21 , and rA,,A 1 be r 

fuzzy sets in rX,,X 1 , respectively. Let f be a 

mapping from rXXXX  21 to a universe Y 

such that  rx,,xfy 1 . The extension principle 

allows us to induce from r fuzzy sets Ai a fuzzy set B 

on Y through f such that 

 

    
 

    rAA
x,,xfy;x,,x

B x,,xminsupy
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11
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 (38) 

 

          yfyB
1  if  0                                    (39) 

 
One can prove, see e.g. books by Dubois and Prade [6] 

or by Zimmermann [27], that the application of the 

extension principle is equivalent to the application of 

the interval arithmetics on -cuts. 

Fuzzy sets, and their special instances – fuzzy 

numbers, have been applied in solving different 

reliability problems. An extensive overview of these 

applications can be found in Hryniewicz [8]. If we 

want to apply this approach to the analysis of field 

lifetime tests we can directly apply the results 

presented in the previous section. In order to do so let 

us notice that the calculations presented in that section 

are exactly the same as the calculations that should be 

done for given -cuts representing fuzzy data. 

 

5. Conclusion 

Probabilistic models that have been proposed for the 

description of field lifetime data, and are relatively 

easy to be applied in practice, usually do not describe 

all the aspects of this type of data. If we want to build 

models, which better describe reality, then immediately 

these models become very complicated. Moreover, 

additional assumptions have to be made in order to 

describe complex phenomena characteristic for this 

problem. In this paper we have proposed an alternative 

but only approximate approach where unknown values 

of model parameters are represented in terms of 

intervals. By applying the interval arithmetics we can 

calculate the bounds on the values of respective 

reliability characteristics. If additional but still 

imprecise information is available we propose to 

generalize the interval-valued calculations to fuzzy-

valued ones. The results of these calculations can be 

interpreted as possibility distributions in the sense of 

Zadeh [26], defined on sets of possible values of vague 

quantities. It has to be stressed, however, that if 

appropriate probabilistic information is available it 

should not be replaced with the fuzzy one. Fuzziness in 

our models does not replace randomness, but 

supplements it if we have to use imprecisely perceived 

notions or vague statistical data. 

 

References 

[1] Cohen, C. A. (1959). Simplified estimators for the 

normal distribution when samples are singly 

censored or truncated. Technometrics, 1, 217 – 237. 



Hryniewicz Olgierd 

Statistical analysis of interval and imprecise data – applications in the analysis of reliability field data 

 

 192 

[2] Cohen, C. A. (1991). Truncated and censored 

samples: theory and applications. Marcel Dekker, 

New York. 

[3] Coit, D. W. & Dey, K. A. (1999). Analysis of 

grouped data from field-failure reporting systems. 

Reliability Engineering and System Safety, 65, 95 – 

101. 

[4] Coit, D. W. & Jin, T. (2000). Gamma distribution 

parameter estimation for field reliability data with 

missing failure times. IEE Transactions, 32, 1161 – 

1166. 

[5] Cox, D. R. (1972). Regression models and life 

tables (with discussion). Journal of the Royal 

Statistical Society, ser.B, 34, 187 – 202. 

[6] Dubois, D. & Prade, H. (1980). Fuzzy Sets and 

Systems. Theory and Applications. Academic Press, 

New York. 

[7] Duchesne, T. & Lawless, J. F. (2000). Alternative 

time scales and failure time models. Lifetime Data 

Analysis, 6, 157-179. 

[8] Hryniewicz, O. (2007). Fuzzy sets in the evaluation 

of reliability. In: Computational Intelligence in 

Reliability Engineering. New Metaheuristcs, Neural 

and Fuzzy Terchniques in Reliability, Levitin, G. 

(Ed.), Springer, Berlin., 363 – 386. 

[9] Hu, J. X. & Lawless, J. F. (1996a). Estimation from 

truncated lifetime data with supplementary 

information on covariates and censoring times. 

Biometrika, 83(4), 747-761. 

[10] Hu, J. X. & Lawless, J. F. (1996b). Estimation of 

rate and mean functions from truncated recurrent 

event data. Journal of the American Statistical 

Association, 91, 300-310. 

[11] Hu, J. X., Lawless, J. F. & Suzuki, K. (1998). 

Nonparametric estimation of a lifetime distribution 

when censoring times are missing. Technometrics, 

40, 3-13. 

[12] Jung, M. & Bai, D. S. (2007). Analysis of field data 

under two-dimensional warranty. Reliability 

Engineering and System Safety, 92, 135-143. 

[13] Kalbfleisch, J. D. & Lawless, J. F. (1988). 

Estimation of reliability in field-performance 

studies. Technometrics. 30, 365-388. 

[14] Kalbfleisch, J. D., Lawless, J. F. & Robinson, J.A. 

(1991). Methods for the analysis and prediction of 

warranty claims. Technometrics, 33, 273-285. 

[15] Kaplan, E. L. & Meier, P. (1958). Nonparametric 

estimation from incomplete observations. Journal 

of the American Statistical Association, 53, 457 – 

481. 

[16] Lawless, J. F. (1982). Statistical Models and 

Methods for Lifetime Data. John Wiley and Sons, 

New York. 

[17] Lawless, J. F. (1998). Statistical analysis of product 

warranty data. International Statistical Review, 66, 

41-60. 

[18] Lawless, J. F., Hu, J. & Cao, J. (1995). Methods for 

the estimation of a lifetime distributions and rates 

from automotive warranty data. Lifetime Data 

Analysis, 1, 227-240. 

[19] Lin, D. K. J., Usher, J. S. & Guess, F.M (1996). 

Bayes estimation of component-reliability from 

masked system-life data. IEEE Transactions on 

Reliability, 45, 233 – 237. 

[20] Oh, Y. S. & Bai, D. S. (2001). Field data analyses 

with after-warranty failure data. Reliability 

Engineering and System Safety, 72, 1-8. 

[21] Rai, B. & Singh, N. (2003). Hazard rate estimation 

from incomplete and unclean warranty data. 

Reliability Engineering and System Safety, 81, 79 – 

82. 

[22] Suzuki, K. (1985). Estimation of lifetime 

parameters from incomplete field data. 

Technometrics, 27, 263-272. 

[23] Suzuki, K. (1985). Nonparametric estimation of 

lifetime distributions from a record of failures and 

follow-ups. Journal of the American Statistical 

Association, 80, 68-72. 

[24] Usher, J. S. (1996). Weibull component reliability-

prediction in the presence of masked data. IEEE 

Transactions on Reliability, 45, 229-232. 

[25] Zadeh, L. A. (1965). Fuzzy sets. Information and 

Control, 8, 338 – 353. 

[26] Zadeh, L.A. (1978). Fuzzy sets as a basis for a 

theory of possibility. Fuzzy Sets and Systems, 1, 3 – 

28. 

[27] Zimmermann, H. J. (1996). Fuzzy Set Theory and 

its Applications (Third Edition), Kluwer, Boston.  

 

 

 

 

 

 

 

 


