PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Assessment of Napropamide Dissipation and its Effect on Soil Enzymatic Activity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper assesses the dissipation of napropamide and its impact on the activity of dehydrogenases, alkaline phosphatase, acid phosphatase, and urease in sandy clay loam. The experiment was carried out on soil samples with organic carbon content of 12.08 g·kg-1, total nitrogen content of 0.97 g·kg-1, and pH 5.24 with the following variable factors: (a) dose of Devrinol 450 SC formation (containing 450 g of naprop-amide in dm3): 0 (control), 0.5, 1, 2, 4, 8, and 16-fold hold of field dose; (b) day of experiment: 1, 7, 14, 28, 56, and 112. The half-life of napropamide ranged from 33.50 to 71.42 days. The use of napropamide at the dose recommended by the manufacturer and at the dose reduced by half appeared to exhibit low toxicity in relation to enzymes determined. In contrast, the application of elevated napropamide doses decreased the values of biochemical parameters of the soil in most cases. The Pearson’s correlation coefficients showed statistically significant negative correlation between the content of napropamide residues and the enzymatic activity of the soil.
Słowa kluczowe
Rocznik
Strony
64--70
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
  • Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
  • Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
autor
  • Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
autor
  • Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology in Szczecin, Słowackiego 17, 71-434 Szczecin, Poland
Bibliografia
  • 1. Bielińska E.J., Mocek A. 2010. Sorption properties and enzymatic activity of municipal park soils in regions of varying impact of anthropologic pressure. J. Res. Appl. Agric. Engin. 55 (3), 20-23.
  • 2. Bielińska E.J., Mocek-Płóciniak A. 2016. Biochemical and chemical indices of soil transformation on goose farms in years 1996-2011. Arch. Environ. Protect. 41 (1), 80-85.
  • 3. Biswas P.K., Pramanik S.K., Mitra S.R., Bhattacharyya A. 2007. Persistence of napropamide in/on tea under North-East Indian climatic condition. Bull. Environ. Contam. Toxicol. 79 (5), 566-569.
  • 4. Cycoń M., Markiewicz A., Piotrowska-Seget Z. 2013a. Structural and functional diversity of bacterial community in soil treated with the herbicide napropamide estimated by the DGGE, CLPP and r/K-strategy approaches. Appl. Soil Ecol. 77, 242-250.
  • 5. Cycoń M., Wójcik M., Borymski S., Piotrowska-Seget Z. 2013b. Short-term effects of the herbicide napropamide on the activity and structure of the soil microbial community assessed by the multi-approach analysis. Appl. Soil Ecol. 66, 8-18.
  • 6. Di Tomaso J.M., Ashton F.M., Rost T.L. 1988. Effects of napropamide on growth and anatomy of corn, Zea mays, roots. Weed Sci. 36 (4), 457-463.
  • 7. Donaldson S.G., Miller G.C. 1996. Coupled transport and photodegradation of napropamide in soils undergoing evaporation from a shallow water table. Environ. Sci. Technol. 30 (2), 924-930.
  • 8. Guo H., Zhu H.M., Yang H. 2008. Degradation and adsorption behavior of napropamide in soils. Environ. Sci. 29 (6), 1729-1736.
  • 9. Guo H., Chen G., Lv Z., Zhao H., Yang H. 2009. Alteration of microbial properties and community structure in soils exposed to napropamide. J. Environ. Sci. 21 (4), 494-502.
  • 10. Han S.S. 1995. Isolation and characteristics of soil microorganisms degrading herbicide napropamide. Kor. J. Weed Sci. 15 (4), 63-72.
  • 11. Kandeler E., Gerber H. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, 68-72.
  • 12. Klecka G.M., Carpenter C.L., Landerberger B.D. 1993. Biodegradation of aircraft dicing fluids in soil at low temperatures. Ecotoxicol. Environ. Saf. 25, 280-295.
  • 13. Krzyśko-Łupicka T., Kręcidło Ł., Koszałkowska Ł. 2015. The ability of selected bacteria to grow in the presence of glyphosate. Ecol. Chem. Engin. A. 22 (2), 185-193.
  • 14. McGahey C., Bouwer E.J. 1992. Biodegradation of ethylene glycol in simulated subsurface environments. Wat. Sci. Technol. 26, 41-49.
  • 15. McVicker L., Duffy D., Stout V. 1998. Microbial growth in a steady-state model of ethylene glycol-contaminated soil. Curr. Microbiol. 36 (3), 136-147.
  • 16. Rouchaud J., Gustin F., van Himme M., Bulke R., Benoit F. 1991. Soil metabolism of the herbicide napropamide in cereals, maize, sugar beet and vegetable field replacement crops. Weed Res. 31 (4), 161-169.
  • 17. Płatkowski M., Telesiński A. 2016. Response of soil phosphatases to glyphosate and its formulations – Roundup (laboratory conditions). Plant Soil Environ. 62 (6), 286-292.
  • 18. Stręk M., Telesiński A. 2016. Comparison of selenite (IV) and selenate (VI) effect on some oxido-reductive enzymes in soil contaminated with spent engine oil. Plant Soil Environ. 62 (4), 157-163.
  • 19. Stręk M., Telesiński A. 2017. Effect of selenium application on some oxidoreductive enzymes in loamy sand contaminated with diesel oil. Environ. Protect. Engin. 43 (1), 151-160.
  • 20. Tabatabai M.A., Bremner J.M. 1969. Use of p-nitrophenyl phosphate for assay soil phosphatase activity. Soil Biol. Biochem. 1 (4), 307-310.
  • 21. Telesiński A., Michalcewicz W., Płatkowski M., Stręk M., Onyszko M., Wiśniewska J. 2015. The side-effect of organic soinosad on biochemical and microbiological properties of clay soil. J. Ecol. Eng. 16 (4), 191-197.
  • 22. Thalmann A. 1968. Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirt. Forsch. 21, 249-258.
  • 23. Wauchope R.D., Buttler T.M., Hornsby A.G., Augustijn Becker P.W.M., Burt J.P. 1992. SCS/ARS/CES pesticide properties database environmental decision making. Rev. Environ. Contam. Toxicol. 123, 1-157.
  • 24. Walker A., Brown P.A., Mathews P.R. 1985. Persistence and phytotoxicity of napropamide residues in soil. Ann. Appl. Biol. 106 (2), 323-333.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d80891ba-076b-46e1-bc3f-aa5c9e88cf86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.