PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing soil analysis in precision agriculture: Evaluating alternative methods for SOC prediction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil analysis plays a crucial role in precision agriculture, where alternatives or complementary methods to traditional laboratory analysis are needed to reduce costs and processing times. This study evaluated models from different devices for estimating soil organic carbon (SOC) using visible near-infrared (Vis-NIR) spectral data and examined the predictive performance of these models across diverse soil types and land uses. A total of 266 soil samples were collected at various depths from two dehesa farms. Soil reflectance spectra were measured using a LabSpec 5000 spectrophotometer with a contact probe and a Muglight accessory. SOC concentration was determined using the Walkley & Black method. Model prediction accuracy was assessed through metrics including the coefficient of determination (R2), residual predictive deviation (RPD), root mean squared error (RMSE), and range error ratio (RER). Cross-validation demonstrated strong predictive accuracy for SOC, with R2 and RPD values exceeding 0.95 and 4.54, respectively, and RER values surpassing 20. Although external validation metrics were more conservative, they still showed excellent RPD indices above 3.12, with no significant difference between devices. Both the Muglight and contact probe yielded low RMSE values (0.222 vs. 0.244) and high R2 values (0.90 vs. 0.89). These findings indicate that both devices can reliably predict SOC, with the contact probe offering the added advantage of faster spectrum recording compared to the Muglight.
Rocznik
Strony
322--331
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Campus Politécnico El Limón, Calceta, Ecuador
Bibliografia
  • 1. Arrouays D., Feller C., Jolivet C., Saby N., Andreux F., Bernoux M. (2003). Estimation de stocks de carbone organique des sols à différentes échelles d’ espace et de temps. Etude et Gestion des Sols, 10(4), 347–355.
  • 2. Baldock J. A., Hawke B., Sanderman J., MacDonald L. M. (2013). Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra. Soil Research, 51(7–8), 577–595. https://doi.org/10.1071/SR13077
  • 3. Barnes R. J., Dhanoa M. S., Lister S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772–777. https://doi.org/10.1366/0003702894202201
  • 4. Bernoux M., da Conceição M., Volkoff B., Cerri C. C. (2002). Brazil’s Soil Carbon Stocks. Soil Science Society of America Journal, 66(3). https://doi.org/10.2136/sssaj2002.8880
  • 5. Cao Y., Bao N., Liu S., Zhao W., Li S. (2020). Reducing moisture effects on soil organic carbon content prediction in visible and near-infrared spectra with an external parameter othogonalization algorithm. Canadian Journal of Soil Science, 1–10. dx.doi.org/10.1139/cjss-2020-0009
  • 6. Chen S. Li S. Ma W. Ji W. Xu D. Shi Z. & Zhang G. (2019). Rapid determination of soil classes in soil profiles using vis–NIR spectroscopy and multiple objectives mixed support vector classification. European Journal of Soil Science, 70(1), 42–53. https://doi.org/10.1111/ejss.12715
  • 7. Chen S., Peng J., Ji W., Zhou Y., He J., Shi Z. (2016). Study on the characterization of VNIR-MIR spectra and prediction of soil organic matter in paddy soil. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu, 36(6), 1712–1716. http://www.ncbi.nlm.nih.gov/ pubmed/30052377
  • 8. Clark R. N., King T. V., Klejwa M., Swayze G. A., Vergo N. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95. https://doi.org/10.1029/jb095ib08p12653
  • 9. Douglas R. K., Nawar S., Alamar M. C., Coulon F., Mouazen A. M. (2018). Rapid detection of alkanes and polycyclic aromatic hydrocarbons in oil-contaminated soil with visible near-infrared spectroscopy. European Journal of Soil Science, 1–11. https://doi.org/10.1111/ejss.12567
  • 10. Gandariasbeitia M., Besga G., Albizu I., Larregla S., Mendarte S. (2017). Prediction of chemical and biological variables of soil in grazing areas with visible- and near-infrared spectroscopy. Geoderma, 305, 228–235. https://doi.org/10.1016/j.geoderma.2017.05.045
  • 11. Guillén C. E., Dávila M. J., Gilliot J. M., Vaoudour E. (2013). Aporte de la espectroscopia a la estimación de carbono orgánico de los suelos de la planicie de Versalles, Francia. Revista Geografica Venezolana, 54(1), 85–98.
  • 12. He Y., Huang M., Garcia A., Hernandez A., Song H. (2007). Prediction of soil macronutrients content using near-infrared spectroscopy. Computers and Electronics in Agriculture, 58(2), 144–153. https://doi.org/10.1016/j.compag.2007.03.011
  • 13. Hong Y., Yu L., Chen Y., Liu Y., Liu Y., Liu Y., Cheng H. (2017). Prediction of soil organic matter by VIS–NIR spectroscopy using normalized soil moisture index as a proxy of soil moisture. Remote Sensing, 10(1), 28. https://doi.org/10.3390/ rs10010028
  • 14. Hosseini M., Rajabi S., Khaledian Y., Jafarzadeh H., Brevik E., Movahedi S. (2017). Comparison of multiple statistical techniques to predict soil phosphorus. Applied Soil Ecology, 114, 123–131. https://doi.org/10.1016/j.apsoil.2017.02.011
  • 15. Huang C., Han L., Liu X., Ma L. (2011). The rapid estimation of cellulose, hemicellulose, and lignin contents in rice straw by near infrared spectroscopy. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 33(2), 114–120. https://doi.org/10.1080/15567030902937127
  • 16. Ji W., Li S., Chen S., Shi Z., Viscarra Rossel R. A., Mouazen A. M. (2016). Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil and Tillage Research, 155, 492–500. https:// doi.org/10.1016/j.still.2015.06.004
  • 17. Kusumo B. H. (2018). In Situ Measurement of Soil Carbon with Depth using Near Infrared (NIR) Spectroscopy. IOP Conference Series: Materials Science and Engineering, 434. https://doi.org/10.1088/1757-899X/434/1/012235
  • 18. Kusumo B. H., Sukartono S., Bustan B. (2018a). The rapid measurement of soil carbon stock using near-infrared technology. IOP Conference Series: Earth and Environmental Science, 129(1). https://doi.org/10.1088/1755-1315/129/1/012023
  • 19. Kusumo B. H., Sukartono S., Bustan B. (2018b). Rapid measurement of soil carbon in rice paddy field of lombok island indonesia using near infrared technology. IOP Conference Series: Materials Science and Engineering, 306(1). https://doi.org/10.1088/1757-899X/306/1/012014
  • 20. McGuirk S. L., Cairns I. H. (2024). Relationships between soil moisture and visible–NIR soil reflectance: A review presenting new analyses and data to fill the gaps. Geotechnics, 4(1), 78–108. https://doi.org/10.3390/geotechnics4010005
  • 21. Makovníková J., Širáň M., Houšková B., Pálka B., Jones A. (2017). Comparison of different models for predicting soil bulk density. Case study – Slovakian agricultural soils. International Agrophysics, 31(4), 491–498. https://doi.org/10.1515/intag-2016-0079
  • 22. Marion L. (1969). Soil chemical analysis: advanced course: a manual of methods useful for instruction and research in soil chemistry, physical chemistry of soils, soil fertility, and soil genesis. (available at http://www.sidalc.net/cgi-bin/wxis. exe/?IsisScript=bac.xis&method=post&formato= 2&cantidad=1&expresion=mfn=029021)
  • 23. Marmette M., Adamchuk V., Nault J., Tabatabai S., Cocciardi R. (2018). Comparison of the Performance of Two Vis-NIR Spectrometers in the Prediction of Various Soil Properties. Proceedings of the 14th International Conference on Precision Agriculture, Montreal, Quebec, Canada, (June), 1–12. (available at https://www.ispag.org/proceedings/?a ction=abstract&id=5404&search=types)
  • 24. Martens H., Naes T. (1989). Assessment, validation and choice of calibration method. Multivariate Calibration: 237–266.
  • 25. Minu S., Shetty A. (2018). Prediction accuracy of soil organic carbon from ground based visible near-infrared reflectance spectroscopy. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-017-0744-0
  • 26. O’Rourke S. M., Holden N. M. (2011). Optical sensing and chemometric analysis of soil organic carbon - a cost effective alternative to conventional laboratory methods? Soil Use and Management. https://doi.org/10.1111/j.14752743.2011.00337.x
  • 27. Omran S. (2017). Rapid soil analyses using modern sensing technology: toward a more sustainable agriculture. In The Handbook of Environmental Chemistry, 41–53. https://doi.org/10.1007/698
  • 28. Ostovari Y., Ghorbani-Dashtaki S., Bahrami H., Abbasi M., Dematte A. M., Arthur E., Panagos P. (2018). Towards prediction of soil erodibility, SOM and CaCO 3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma, 314, 102–112. https://doi.org/10.1016/j.geoderma.2017.11.014
  • 29. Ouerghemmi W., Gomez C., Naceur S., Lagacherie P. (2011). Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces. Geoderma, 163(3–4), 227–237. https://doi.org/10.1016/j.geoderma.2011.04.019
  • 30. Pinheiro É., Ceddia M., Clingensmith C., Grunwald S., Vasques G. (2017). Prediction of soil physical and chemical properties by visible and near-infrared diffuse reflectance spectroscopy in the central amazon. Remote Sensing, 9(4).https://doi.org/10.3390/rs9040293
  • 31. Roberts C., Workman J., Reeves J. 2004. Near-infrared spectroscopy in agriculture. Agronomy, 44, 1–14.
  • 32. Rossel R., Behrens T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1–2), 46–54. https://doi.org/10.1016/j.geoderma.2009.12.025
  • 33. Siirt M. B., Species I. P. (2016). Visible and near infrared spectroscopy techniques for determination of some physical and chemical properties in Kazova. Visible and Near Infrared Spectroscopy Techniques for Determination of Some Physical and Chemical Properties in Kazova Watershed. Advances in Environmental Biology, 10, 61–72.
  • 34. St. Luce M., Ziadi N., Gagnon B., Karam A. (2017). Visible near infrared reflectance spectroscopy prediction of soil heavy metal concentrations in paper mill biosolid- and liming by-product-amended agricultural soils. Geoderma, 288, 23–36. https://doi.org/10.1016/j.geoderma.2016.10.037
  • 35. Stenberg B., Viscarra Rossel R. A., Mouazen A. M., Wetterlind J. (2010). Visible and near infrared spectroscopy in soil science. Advances in Agronomy (107). https://doi.org/10.1016/S0065-2113(10)07005-7
  • 36. Terra F. S., Demattê J., Viscarra Rossel R. A. (2015). Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis-NIR and mid-IR reflectance data. Geoderma, 255, 81–93. https://doi.org/10.1016/j.geoderma.2015.04.017
  • 37. Viscarra Rossel R. A., Behrens T., Ben-Dor E., Brown D. J., Demattê J. A., Shepherd K. D., Shi Z., Stenberg B., Stevens A., Adamchuk V., Aïchi H., Barthès B. G., Bartholomeus H. M., Bayer A. D., Bernoux M., Böttcher K., Brodský L., Du C. W., Chappell A., Ji, W. (2016). A global spectral library to characterize the world’s soil. Earth-Science Reviews, 155, 198–230. https://doi.org/10.1016/j. earscirev.2016.01.012
  • 38. Viscarra Rossel R. A., Walvoort D., McBratney A. B., Janik L. J., Skjemstad J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59– 75. https://doi.org/10.1016/j.geoderma.2005.03.007
  • 39. Vitharana U., Mishra U., Mapa R. B. (2019). National soil organic carbon estimates can improve global estimates. Geoderma, 337, 55–64. https:// doi.org/10.1016/j.geoderma.2018.09.005
  • 40. Walkley A. (1947). A critical examination of a rapid method for determining organic carbon in soils – effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–264. https://doi.org/10.1097/00010694194704000-00001
  • 41. Wenjun J., Zhou S., Jingyi H., Shuo L. (2014). In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy. PLoS ONE. https://doi.org/10.1371/journal.pone.0105708
  • 42. Wight P., Allen L., Tyler D., Labbe, N., Rials T., Ashworth A. (2016). Comparison of near infrared reflectance spectroscopy with combustion and chemical methods for soil carbon measurements in agricultural soils. Communications in Soil Science and Plant Analysis, 47(6), 731–742. https://doi.org/10.1080/00103624.2016.1146750
  • 43. Wold S., Sjöström M., Eriksson L. (2001). PLS-regression: a basic comp with MR. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
  • 44. Xu D., Ma W., Chen S., Jiang Q., He K., Shi Z. (2018). Assessment of important soil properties related to Chinese Soil Taxonomy based on vis– NIR reflectance spectroscopy. Computers and Electronics in Agriculture, 144, 1–8. https://doi.org/10.1016/j.compag.2017.11.029
  • 45. Xu S., Zhao Y., Wang M., Shi X. (2018). Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma, 310, 29–43. https://doi.org/10.1016/j.geoderma.2017.09.013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d800b38f-534b-4fae-b855-d90fa7255a6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.