PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On m-ω1-pω+n - projective abelian p-groups

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For any non-negative integers m and n, we define the classes of m-ω1-pω+n -projective groups and strongly m-ω1-pω+n -projective groups, which properly encompass the classes of ω1-pω+n -projectives introduced by Keef in J. Algebra Numb. Th. Acad. (2010) and strongly ω1-pω+n -projectives introduced by the present author in Hacettepe J. Math. Stat. (2014), respectively. The new group structures share many interesting properties, which are closely related to these of the aforementioned two own subclasses. Moreover, certain basic results in this direction are also established.
Wydawca
Rocznik
Strony
805--825
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Department of Mathematics Plovdiv State University “P. Hilendarski”, Plovdiv 4000, Bulgaria
Bibliografia
  • [1] B. Charles, Note sur la structure des groupes abeliens primaires, C. R. Acad. Sci. Paris 252 (1961), 1547–1548.
  • [2] P. Danchev, On weakly ω1-pω+n-projective abelian p-groups, J. Indian Math. Soc. 80(1–4) (2013), 33–46.
  • [3] P. Danchev, On strongly and separably ω1-pω+n-projective abelian p-groups, Hacet. J. Math. Stat. 43(1) (2014), 51–64.
  • [4] P. Danchev, On nicely and separately ω1-pω+n-projective abelian p-groups, Math. Reports, to appear (2015).
  • [5] P. Danchev, On variations of m; n-simply presented abelian p-groups, Sci. China (Math.) 57(9) (2014), 1771–1784.
  • [6] P. Danchev, On variations of m; n-totally projective abelian p-groups, Math. Moravica 18(1) (2014), 39–53.
  • [7] P. Danchev, P. Keef, An application of set theory to ω + n-totally pω+n -projective primary abelian groups, Mediterr. J. Math. 8(4) (2011), 525–542.
  • [8] P. Danchev, P. Keef, On n-simply presented primary abelian groups, Houston J. Math. 38(4) (2012), 1027–1050.
  • [9] P. Danchev, P. Keef, On properties of n-totally projective abelian p-groups, Ukrainian Math. J. 64(6) (2012), 766–771.
  • [10] P. Danchev, P. Keef, On m; n-balanced projective and m; n-totally projective primary abelian groups, J. Korean Math. Soc. 50(2) (2013), 307–330.
  • [11] L. Fuchs, Infinite Abelian Groups, Volumes I and II, Academic Press, New York and London, 1970 and 1973.
  • [12] P. Griffith, Infinite Abelian Group Theory, The University of Chicago Press, Chicago and London, 1970.
  • [13] J. Irwin, T. Snabb, D. Cutler, On pω+n-projective p-groups, Comment. Math. Univ. St. Paul. 35(1) (1986), 49–52.
  • [14] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954 and 1969.
  • [15] P. Keef, On ω1-pω+n -projective primary abelian groups, J. Algebra Numb. Th. Acad. 1(1) (2010), 41–75.
  • [16] R. Nunke, Purity and subfunctors of the identity, Topics in Abelian Groups, Scott, Foresman and Co., 1962, 121–171.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d8001ca5-2005-4d22-add5-6f1f12449d7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.