PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of synergic controlled pulsed and manual gas metal ARC welding processes on mechanical and metallurgical properties of AISI 430 ferritic stainless steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ automatycznego i ręcznego spawania elektrodą topliwą na właściwości mechaniczne i metalurgiczne ferrytycznej stali nierdzewnej AISI 430
Języki publikacji
EN
Abstrakty
EN
The gas metal arc is widely used in manufacturing industries because of the high metal deposition rate and ease of automation with better weld quality at permissible cost than other welding processes in joining similar and dissimilar metals. AISI 430 steel is normally difficult to weld by melting methods, due to the associated problems such as grain growth. For this purpose, AISI 430 ferritic stainless steel couples of 10 mm thick were welded by the synergic controlled pulsed (GMAW-P) and manual gas metal arc (GMAW) welding techniques. The interface appearances of the welded specimens were examined by scanning electron microscopy (SEM). Structural changes in the weld zone were analysed by energy dispersive spectrometry (EDS) and X-ray diffraction (X-RD). Microhardness, notch charpy and tensile tests were conducted to determine the mechanical properties of specimens. Accordingly, the best result was obtained from the GMAW-P technique.
PL
Spawanie elektrodą topliwą w osłonie gazów aktywnych jest szeroko stosowane w przemyśle wytwórczym, ze względu na wysokie tempo osadzania metalu i łatwość automatyzacji oraz lepszą jakości spoiny przy dopuszczalnych kosztach niż w wypadku innych procesów spawania podobnych i różnych metali. Stal AISI 430 jest trudna do spawania metodami nadtapiania (z elektrodą nietopliwą), ze względu na związane z nimi problemy takie jak wzrost ziarna. Elementy ze stali ferrytycznej AISI 430 o grubości 10 mm zostały zespawane techniką GMAW-P i GMAW. Do badania morfologii spawanych próbek wykorzystano metodę skaningowej mikroskopii elektronowej (SEM). Zmiany strukturalne w strefie spoiny analizowano metodą spektrometrii z dyspersją energii (EDS) i dyfrakcji rentgenowskiej (X-RD). Pomiary mikrotwardości, udamości i próby rozciągania przeprowadzono w celu określenia właściwości mechanicznych próbek. Stwierdzono, że najlepszy wynik uzyskano dla spoin wytworzonych techniką GMAW-P.
Twórcy
autor
  • University of Adiyaman, Faculty of Engineering, Department of Materials Engineering, 02040, Adiyaman, Turkey
Bibliografia
  • [1] P. Praveen, P. K. D. V. Yarlagadda, M. J. Kang, Advancements in pulse gas metal arc welding, Journal of Materials Processing Technology 164-165, 1113-1119 (2005).
  • [2] S. C. Absi Alfaro, G. C. Carvalho, S. A. Melojunior, Stand offs indirect estimation in GMAW, Mater Journal of Materials Processing Technology 3-7, 157-158 (2004).
  • [3] M. Suba, J. Tusek, Dependence of melting rate in MIG/MAGwelding on the type of shielding gas used, Journal of Materials Processing Technology 119(1-3), 185-192 (2001).
  • [4] R. Kacar, K. Kokemli, Effect of controlled atmosphere on the MIG-MAGarc weldment properties, Materials Design 26(6), 508-516 (2005).
  • [5] P. K. Palani, N. Murugan, Selection of parameters of pulset current gas metal arc welding, Mater Process Technol 172, 1-10 (2006).
  • [6] M. Thamodharan, H. P. Beck, A. Wolf, Steady and pulsed direct current welding withasingle converter, Welding Journal 78 (3), 75-79 (1999).
  • [7] A. Raja, Flux core stelliting by pulsed MAGwelding, WRI J 19 (3), 98-101 (1998).
  • [8] I. E. French, M. R. Bosworth, Acomparison of pulsed and conventional welding with basic flux cored and metal cored welding wires, Welding Journal 74 (6), 197-205 (1995).
  • [9] K. Pal, S. K. Pal, Effect of pulse parameters on weld quality in pulsed gas metal arc welding: A Review, Journal of Materials Engineering and Performance 2010; DOI: 10.1007/s11665-010-9717-y
  • [10] M. Jilong, R. L. Apps, New MIGprocess results from metal transfer mode control, Weld Met Fabr 51, 168-175 (1983).
  • [11] B. Bernar d, Effects of shielding gas in pulsed MIGwelding, Join Mater, June, 277-280 (1989).
  • [12] A. Baggerua, Welding metallurgy. Norvec¸ Technic University, Translates; S. Anık, Engineer: T. Tulbentci Iskender Edit, ˙Istanbul, 1996.
  • [13] V. Balasubramanian, V. Jayabalan, M. Balasubramania n, Effect of current pulsing on tensile properties of titanium alloy, Materials Design 29, 1459-1466 (2008).
  • [14] V. V. Satyanarayana, G. M. Reddy, T. Mohandas, Dissimilar metal friction welding of austenitic-ferritic stainless steels, Journal of Materials Processing Technology 160 (2), 128-137 (2005).
  • [15] J. Tusek, Z. Kampus, M. Suban, Welding of tailored blanks of different materials, Journal of Materials Processing Technology 119 (1-3), 180-184 (2001).
  • [16] J. C. Lippold, D. J. Kotecki, Welding metallurgy and weldability of stainless steels, A John Wiley & Sons, Inc., Publication, 88-135 (2005).
  • [17] I. M. Moustafa, M. A. Moustafa, A. A. Nofal, Carbide formation mechanism during solidification and annealing of 17% Cr-ferritic steel, Mater ials Letters 42 (6), 371-379 (2000).
  • [18] P. K. Ghosh, S. R. Gupta, H. S. Randhawa, Characteristics ofapulsed-current, vertical-up gas metal arc weld in steel, Metallurgical Materials Transaction A 31A, 2247-2259 (2000).
  • [19] J. S. Ivan, B. Paulo, P. J. Modenesi, High frequency induction welding simulating on ferritic stainless steels, Journal of Materials Processing Technology 179 (1-3), 225-230 (2006).
  • [20] L. M. Gourd, Principles of welding technology, Third Ed. British Library Cataloguing in Publication Data, London, 4042 (1995).
  • [21] ASTM International Standard E8M-04, Standard test methods for tension testing of metallic materials, 2004.
  • [22] ASTM International Standard E23-06, Standard test methods for notched bar impact testing of metallic materials, 2006.
  • [23] B. Gulenc, K. Develi, N. Kahraman, A. Durgutlu, Experimental study of the effect of hydrogen in argon asashielding gas in MIGwelding of austenitic stainless steel, International Journal of Hydrogen Energy 30 (13-14), 1475-1481 (2005).
  • [24] V. S. R. Murti, P. D. Srinivas, G. H. D. Banadeki, K. S. Raju, Effect of heat ınput on the metallurgical properties of HSLAsteel in multi-pass MIGwelding, Mater Process Technol 37(1-4), 723-729 (1993).
  • [25] G. Lothongkum, E. Viyanit, P. Bhandhubanyong, Study on the effects of pulsed TIGwelding parameters on delta-ferrite content, shape factor and bead quality in orbital welding of AISI 316Lstainless steel plate, Journal of Materials Processing Technology 110 (2), 233-238 (2001).
  • [26] A. Durgutlu, Experimental investigation of the effect of hydrogen in argon asashielding gas on TIGwelding of austenitic stainless steel, Materials Design 25 (l), 19-23 (2004).
  • [27] W. F. Smith, Material science and engineering, Third Edition, Mc Graw-Hill Companies, 271-278 (2004).
  • [28] M. V. Suresh, B. V. Krishna, P. Venugopal, K. Prasad Rao, Effect of pulse frequency in gas tungsten arc welding of powder metallurgical performs, Science and Technology of welding and joining 9 (4), 362-368 (2004).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7f9759d-5789-4203-9462-37021e9ed737
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.