Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Starch can be found in microalgae, the raw material for the third generation of bioethanol production. One of them is C. pyrenoidosa. This study was conducted to analyze the effect of α-amylase enzyme concentration on the glucose contents produced and the effects of fermentation time on bioethanol contents produced. The hydrolysis process of this study was conducted using an α-amylase enzyme produced by A. niger. Several analyses in this research were carried out, including the analysis of enzyme activity using the Fuwa method, the analysis of glucose levels from enzymatic hydrolysis using the DNS method, and the analysis of bioethanol contents using the density method and GC-MS. The highest glucose content was 0.67 mg/mL, which was obtained from the addition of 40% (v/w) α-amylase enzyme, and the yield of bioethanol content from the sample treated 40% (v/w) α-amylase enzyme and fermented for 9 days was the optimum, which produced 28.07% of bioethanol content.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
34--40
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department of Chemical Engineering, State of Politeknik Sriwijaya, Jl. Srijaya Negara, Palembang 30139, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32, Inderalaya 30662, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang-Prabumulih KM 32, Inderalaya 30662, Indonesia
Bibliografia
- 1. Bolivar-Telleria, M., Turbay, C., Favarato, L., Carneiro, T., De Biasi, R.S., Fernandes, A.A.R., Santos, A. M.C., Fernandes, P.M.B., Lei, Z. 2018. Second-Generation Bioethanol from Coconut Husk. BioMed Research International, 2018. https://doi.org/10.1155/2018/4916497
- 2. Das, S., Singh, S., Sharma, V., Soni, M.L. 2011. Biotechnological applications of industrially important amylase enzyme. International Journal of Pharma and Bio Sciences, 2(1), 486–496.
- 3. Dhull, N.P., Gupta, K., Soni, S.K. 2014. pyrenoidosa and The Enzymatic Hydrolysis of Its Biomass for The Synthesis of Third Generation. PeerJPrePrint, 1(2014), 50–51.
- 4. Fang, W., Xue, S., Deng, P., Zhang, X., Wang, X., Xiao, Y., Fang, Z. 2019. AmyZ1: A novel α-amylase from marine bacterium Pontibacillus sp. ZY with high activity toward raw starches. Biotechnology for Biofuels, 12(1), 1–15. https://doi.org/10.1186/s13068-019-1432-9
- 5. Fitrianti, R., Harianie, L., Ahmad, M. 2014. Pengaruh Suhu dan pH terhadap Aktivitas Enzim Selulase dari Kultur Campuran Trichoderma sp. Gliocladium sp, dan Botrytis sp. yang Ditumbuhkan Pada Media Kulit Pisang. Fisiologi, 61–66.
- 6. Gallagher, D., Parker, D., Allen, D.J., Tsesmetzis, N. 2018. Dynamic Bacterial and Fungal Microbiomes During Sweet Sorghum Ensiling Impact Bioethanol Production. Bioresource Technology, 264(March), 163–173. https://doi.org/10.1016/j.biortech.2018.05.053
- 7. Goh, C.S., Lee, K.T. 2010. A Visionary And Conceptual Macroalgae-Based Third-Generation Bioethanol (TGB) Biorefinery in Sabah, Malaysia As An Underlay for Renewable And Sustainable Development. Renewable and Sustainable Energy Reviews, 14(2), 842–848. https://doi.org/10.1016/j.rser.2009.10.001
- 8. Gupta, K., Chundawat, T.S. 2020. Zinc Oxide Nanoparticles Synthesized Using Fusarium Oxysporum to Enhance Bioethanol Production From Rice-Straw. Biomass and Bioenergy, 143(July), 105840. https://doi.org/10.1016/j.biombioe.2020.105840
- 9. Hassan, M.K., Chowdhury, R., Ghosh, S., Manna, D., Pappinen, A., Kuittinen, S. 2021. Energy and Environmental Impact Assessment of Indian Rice Straw For The Production of Second-Generation Bioethanol. Sustainable Energy Technologies and Assessments, 47(August), 101546. https://doi.org/10.1016/j.seta.2021.101546
- 10. Hung, H.C., Adeni, D.S.A., Johnny, Q., Vincent, M. 2018. Production of bioethanol from sago hampas via Simultaneous Saccharification and Fermentation (SSF). Nusantara Bioscience, 10(4), 240–245. https://doi.org/10.13057/nusbiosci/n100407
- 11. Jiang, D., Hao, M., Fu, J., Liu, K., Yan, X. 2019. Potential Bioethanol Production from Sweet Sorghum on Marginal Land in China. Journal of Cleaner Production, 220, 225–234. https://doi.org/10.1016/j.jclepro.2019.01.294
- 12. Klasson, K.T., Boone, S.A. 2021. Bioethanol Fermentation of Clarified Sweet Sorghum (Sorghum bicolor (L.) Moench) Syrups Sealed and Stored under Vegetable Oil. Industrial Crops and Products, 163(January), 113330. https://doi.org/10.1016/j.indcrop.2021.113330
- 13. Lee, Y.G., Jin, Y.S., Cha, Y.L., Seo, J.H. 2017. Bioethanol Production From Cellulosic Hydrolysates By Engineered Industrial Saccharomyces cerevisiae. Bioresource Technology, 228, 355–361. https://doi.org/10.1016/j.biortech.2016.12.042
- 14. Melikoglu, M., Turkmen, B. 2019. Food waste to energy: Forecasting Turkey’s Bioethanol Generation Potential From Wasted Crops and Cereals Till 2030. Sustainable Energy Technologies and Assessments, 36(October), 100553. https://doi.org/10.1016/j.seta.2019.100553
- 15. Mojsov, K.D. 2016. New and Future Development in Microbial Biotechnology and Bioengineering. Elsevier B.V.
- 16. Moreira, V.R., Lebron, Y.A.R., Freire, S.J., Santos, L.V.S., Palladino, F., Jacob, R.S. 2019. Biosorption of Copper Ions From Aqueous Solution Using Chlorella pyrenoidosa: Optimization, Equilibrium and Kinetics Studies. Microchemical Journal, 145(October 2018), 119–129. https://doi.org/10.1016/j.microc.2018.10.027
- 17. Nur, M.M.A. 2014. Potency of Microalgae as Source of Functional Food in Indonesia (Overview). Eksergi, 11(2), 1–6. https://doi.org/https://doi.org/10.31315/e.v11i2.363
- 18. Olempska-Beer, Z.S., Merker, R.I., Ditto, M.D., Di-Novi, M.J. 2006. Food-Processing Enzymes from Recombinant Microorganisms-A Review. Regulatory Toxicology and Pharmacology, 45(2), 144–158. https://doi.org/10.1016/j.yrtph.2006.05.001
- 19. Padil, P., Syamsiah, S., Hidayat, M., Kasiamdari, R.S. 2017. Kinerja Enzim Ganda Pada Pretreatment Mikroalga Untuk Produksi Bioetanol. Jurnal Bahan Alam Terbarukan, 5(2), 92–100. https://doi.org/10.15294/jbat.v5i2.7564
- 20. Pandebesie, E.S., Kartini, A.M., Wilujeng, S.A., Warmadewanthi, I. 2019. Utilization of Stalks Waste of Sorghum to Produce Bioethanol by Using Saccharomyces cerevisiae and S. cerevisiae-Pichia stipitis Consortium. Journal of Ecological Engineering, 20(4), 54–60. https://doi.org/https://doi.org/10.12911/22998993/102616
- 21. Raheem, A., Prinsen, P., Vuppaladadiyam, A.K., Zhao, M., Luque, R. 2018. A review on Sustainable Microalgae Based Biofuel and Bioenergy Production: Recent Developments. Journal of Cleaner Production, 181, 42–59. https://doi.org/10.1016/j.jclepro.2018.01.125
- 22. Rijal, M. 2020. Bioethanol from Sago Waste Fermented by Baker’s and Tapai Yeast as a Renewable Energy Source. International Journal of Scientific and Technology Research, 9(3), 4918–4924.
- 23. Rizzolo, J.A., Woiciechowski, A.L., Júnior, A.I.M., Torres, L.A.Z., Soccol, C.R. 2021. The potential of sweet potato biorefinery and development of alternative uses. SN Applied Sciences, 3(3), 1–9. https://doi.org/10.1007/s42452-021-04369-y
- 24. Suhartini, S., Rohma, N.A., Mardawati, E., Kasbawati, Hidayat, N., Melville, L. 2022. Biorefining of Oil Palm Empty Fruit Bunches for Bioethanol and Xylitol Production in Indonesia: A Review. Renewable and Sustainable Energy Reviews, 154(December 2020), 111817. https://doi.org/10.1016/j.rser.2021.111817
- 25. Tan, I.S., Lam, M.K., Foo, H.C.Y., Lim, S., Lee, K.T. 2020. Advances of Macroalgae Biomass For The Third Generation Of Bioethanol Production. Chinese Journal of Chemical Engineering, 28(2), 502–517. https://doi.org/10.1016/j.cjche.2019.05.012
- 26. Tolulope Eunice, K. 2021. Enzymatic and Dilute Acid Hydrolyses of Maize Stalk Substrate in Bioethanol Production. Journal of Energy, Environmental & Chemical Engineering, 6(1), 24. https://doi.org/10.11648/j.jeece.20210601.14
- 27. Vitus, J., Otaraku, I.J. 2020. Bioethanol Production from Sweet Potatoes. International Journal of Scientific & Engineering Research, 11(3), 1045–1050.
- 28. Zhao, X.C., Tan, X.B., Yang, L.B., Liao, J.Y., Li, X.Y. 2019. Cultivation of Chlorella pyrenoidosa in Anaerobic Wastewater: The Coupled Effects of Ammonium, Temperature and pH Conditions on Lipids Compositions. Bioresource Technology, 284(March), 90–97. https://doi.org/10.1016/j.biortech.2019.03.117
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7f131d5-90db-4100-a543-7e3f77055e1e