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1. Introduction

In recent years, a new era has seen the development of high-speed 
railway in China. By the end of 2012, China has boasted the cover-
age of about 9,356-km-high-speed railway[11]. The Beijing-Shanghai 
High-speed Railway which began to operate in July, 2011 has further 
pushed China towards super-high-speed trains with an operating speed 
of 380 km/h [20]. During the 13th five-year plan, the high-speed rail-
way is supposed to increase to 30,000km, covering more than 80% 
of big cities. This widespread coverage has definitely rendered the 
reliability of EMUs a top priority. Nowadays, EMUs are generally 
ascribed to the extreme complexity and interdependencies as a result 
of the systematic use of new technologies (such as artificial intelli-
gence, information/communication technologies, or communication 

networks). Failures of EMUs could cause a catastrophic accident, for 
example, the Wenzhou High-speed train crash on July 23, 2011. To 
sum up, the extreme reliability, the most critical of EMUs regarding 
the traction system, can never be underestimated.

Over the past decade, the need to conduct an analysis of system-
atic reliability and safety assessment with respect to EMUs has long 
been recognized. In an effort to avoid economic losses and heavy cas-
ualties arising from safety violations, a large number of studies have 
been conducted to combine risk-based reliability analysis into safety 
control of EMUs. For example, Hanmin Lee, EuijinJoung, et al [18] 
built the management system in PDM (Product Data management) for 
failure history data to analyze the reliability of advanced EMU. Joung, 
E.[14], on the basis of the referenced RAMS standards, presented a 
system of reliability prediction and relevant demonstration procedure 
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to apply it to the advanced EMU. As for the traction system, SeoS 
I, Park C S, Choi S H, et al. [25, 26] offered a procedure that can 
be utilized to assess and manage in a practical manner the reliability 
regarding the prototype system of train traction. With the application 
of reliability block diagram and failure mode effect, an analysis of re-
liability was carried out after the electric traction system is classified 
into subsystems. Chateauneuf Aet al. [8] put forward a methodology 
with the characteristic of consistency reliability to conduct an analysis 
of traction equipments subjected to fatigue, corrosion, and imperfect 
maintenance operations with a view to improving their inspection 
based on a balanced cost and reliability. For the purpose of meeting 
the challenge that different functions of sub-systems are likely to be 
activated in different contexts, Wang S, Ji Y, Dong W.[30] devised 
a new model of reliability analysis which is based on stochastic au-
tomata for the traction system of high-speed train. With the theory 
of stress–intensity distribution interference in mind, and the use of 
the mode of advanced first order and second moment, Li Cet al. [19] 
formulated a reliability model to estimate the reliability of an EMU 
traction system.

An increasing number of recent studies have emphasized on the 
estimate of reliability with regard to EMUs with the use of Bayesian 
networks (BN), a widely applied system to conduct uncertain knowl-
edge representation and reasoning. A comparison has been made be-
tween the modeling and analysis of fault-trees[23,4], reliability block 
diagrams[29] and BNs, which has established that they possess a sig-
nificant advantage over the traditional frameworks. Bayesian network 
models designed for reliability evaluation can be obtained through 
the conversion of the traditional ones [6]. Bobbio et al. [4] presented 
an algorithm of mapping a fault tree with general gates model into an 
equivalent Bayesian network representationvand Kim [21] presented 
a general method to convert a reliability block diagram to a Bayesian 
network. Based on the theory of BN, reference [35] makes the relia-
bility assessment for high-speed train bearing under the extreme sam-
ple size which solves the reliability life of the bearing; Reference [34] 
assesses the reliability of key structure of C70 gondola car which fol-
lows Gaussian distributions for extreme sample size. Dorociak, R.[9] 
presented a method to analyze in a probabilistic manner the reliability 
regarding an innovative autonomous railway vehicle. It renders a sup-
port to the modeling of the failure propagation within the specification 
of complex systems. When the failure propagation is translated into 
a Bayesian network, a sophisticated probability analysis is made pos-
sible. Guo J, Wilson A G. [12] proposed a Bayesian approach to make 
an assessment of the reliability of multi-component systems, which 
facilitates us, with the use of the multilevel information available, to 
evaluate the system, the subsystem, and the component reliability. We 
can safely confirm that the research into railway vehicle reliability is 
still in BN stage.

However, in conventional BN-based analysis, it is a static model 
which stands for a joint probability distribution at a time interval or 
a fixed point. Meanwhile, the dependency among variables is not 
submitted[20,21] in the construction of a BN model. [32, 33]. Yet Dy-
namic Bayesian Networks (DBNs) are enduring extension of BNs, 
which make it convenient for us to acquire explicit modeling of tem-
poral dependencies. DBNs render us an unique technique to model 
time-dependent changes in an intuitive way by means of a robust 
probabilistic framework [16]. And, the learning and reasoning engine 
of DBN makes it a possibility for complex interactions among the 
components of EMUs to be taken into consideration with regard to 
reliability assessment. Many studies, with the use of DBN to esti-
mate system reliability, have been put forward, while Boudali H. et 
al. [5] presented that, through the transformation of Dynamic Fault 
Trees (DFT) into DBN, the integration of the dynamic aspect shall 
be acquired. As for Portinale et al. [24], a software called Reliability 
Analysis with Dynamic Bayesian Networks (RADYBAN) has been 
employed, it supports an automatic translation from DFT into a DBN 

and presents a method of reliability modeling. Weber and Jouffe [31] 
had a methodology employed to facilitate a developing dynamic ob-
ject oriented Bayesian networks to formalize complex and dynamic 
models, with the model structure deduced from the malfunctioning 
(knowledge represented through FMECA method) and functional 
analysis (knowledge formalized by SADT method).

One of the major limitations of the DBN framework, however, is 
the complexity of the system that can be tractably modeled as a DBN 
[22]. Current tools, which are based on the assumption of a pre-built 
DBN, have some disadvantages, including a lack of effective mod-
eling power in depicting both functional and temporal dependencies 
between components. In this paper, a new modeling approach to DBN 
generation is submitted, which can be applied to the system made 
up of certain components and different types of flows propagating 
through them, with each component possessing Conditional Probabil-
ity Table (CPT) for a description of the relations between input–output 
flows. The Component-based CPT (Conditional Probability Table) 
and Time-dependent CPT are used to describe functional dependen-
cies and temporal dependencies respectively. As the complexity and 
size of the system cannot be modeled in a tractable way as a DBN, a 
Breadth-First-Search (BFS) algorithm is introduced for the construc-
tion of the DBN model in an automated manner.

The paper has the structure of organization as follows. Section 2 
offers a general overview of DBN and its inference scheme. In Sec-
tion 3, Basic concepts of a dynamic system model and the component-
based CPTs(Conditional Probability Tables) are introduced. Based on 
these concepts and a trace- back algorithm, an automated DBN gen-
eration procedure is proposed in Section 4. In Section 5, an applica-
tion of the proposed approach to reliability analysis is conducted in a 
traction drive system of the case study of EMUs, with the conclusions 
reached in Section 6.

2. An overview of DBN

Bayesian Networks (BNs) are in the form of directed acyclic 
graphs for uncertainty reasoning, with the nodes representing vari-
ables and links defining probabilistic dependences between variables. 
The CPTs connected to the nodes determine the extent to which the 
linked nodes depend on each other. On the basis of the conditional in-
dependency theorem, BN carries out a factorization of the joint prob-
ability distribution of a set of random variables { }1 2, , nX X X with 
local dependencies in mind. In this aspect, the distribution mentioned 
above can be allowed to be decomposed as what is derived from the 
probabilities of the nodes given their immediate parents:

 [ ] ( )1 2
1

, , |
n

n i i
i

P X X X P X Pa X
=

 =  ∏

 (1)

Where ( )iPa X  is the parent node of variable iX . The computation 
is based on the probabilities of the parent’s states and the CPT. For in-
stance, let us consider two nodes 1X  and 2X  with two states ( 1S  and 

2S ) each structuring the BN. This CPT is defined as a matrix:
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By means of relevant temporal dependencies that capture the dy-
namic behavior of the domain variables between representations of 
the static network at different times, the static BN can be extended to 
get a DBN model. Early work in regard to the application of BNs to 
dynamic domains [1, 2, 10, 14] has rendered us formalisms of DBN, 
with two types of approaches distinguished in the representations of a 
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dynamic Bayesian network, i.e., instant-based (time-sliced) type and 
interval-based (event-based) type [5]. The former involves discretiz-
ing the time line and associating a node to every time instant. Basi-
cally, the models have been acquired with the generation of a BN for 
a specific time instant, with the same structure repeated for every time 
instant over the time range of interest. Example includes Temporal 
Bayesian Networks (TBN) [15], Modifiable Temporal Belief Net-
works (MTBN) [1]and Dynamic Object Oriented BN (DOOBN)[31]. 
In Ref. [31], P. Webber et al. applied a 2-time-slice DBN to model 
temporal dependencies , with the model structure deduced from the 
functional analysis. Another representation of DBN is event-based 
approach. As for the latter, the time line is sliced into a finite number 
of time intervals, with just one BN generated, and each node possess-
ing a finite number of states equalizing to that of time intervals. The 
involved examples are Temporal Nodes Bayesian Networks (TNBN)
[2], Net of Irreversible Events in Discrete Time (NIEDT)[10] and 
Discrete-Time Bayesian network (DTBN)[23], where a node stands 
for an event, with a certain outcome to take place at a certain time 
interval. According to the fact that our DBN model features the fixed 
structure that can be repeated for every time instant, this paper adopts 
the time-sliced type.

The DBNs allow us to taking time into consideration, with the 
definition of different nodes to stand for the variables at different time 
slices. The joint distribution of probability regarding a set of random-
ly variables at time t t+ ∆  can be decomposed as what is derived from 
the probabilities of the nodes given their immediate parents:

1 2
1

, , | , ( ), ( )
n

t t t t t t t t t t t t
n i i i i

i
P X X X P X X Pa X Pa X+∆ +∆ +∆ +∆ +∆
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where t t
iX +∆  and t

iX  are the copies of iX  in two consecutive time 
slices with a time interval of t∆ , ( )t

iPa X  and ( )t t
iPa X +∆  are the 

parent sets of at the time slices t  and t t+ ∆  respectively. Depending 
on the dynamic transition and physical features of the stochastic proc-
ess of interest and thus the conditional inter- dependencies that need 
to be modeled, either aforementioned parent set could be empty.

Defining these impacts as transition probabilities between the 
states of the variable at time step t t+ ∆  and those at time slice t leads 
to the definition of CPTs that are relative to inter-time slices. With this 
model, the future slice t t+ ∆  is conditionally independent of the past 
given the present t , which means that the CPT respects the Markov 
properties. This CPT is defined as:

 P X X P X Pa Xt t t
i
t
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where t
iX  is the i  th node at time t  and ( )t

iPa X  are the parents of
t
iX  in the graph. The nodes in the first slice of a DBN do not have any 

parameters associated with them, but each node in the second slice of 
the DBN has a conditional probability table (CPT) for discrete vari-

ables, which defines P X Pa Xi
t

i
t| ( )( )  for all 1t ≥ . Several inference 

methods for a DBN can be used, i.e., forwards-backwards algorithm, 
unrolled junction tree, and the frontier algorithm. For the evaluation 
of the DBN presented in this article, a Netica procedure[7] based on 
the junction tree is used.

3. Component-based CPT

This modeling method involves a component-based approach, 
i.e., any system is modeled as a group of interconnected components. 
Different classifications of energy, information or materials are trans-
ferred in the form of flows by means of the connections between the 
components, with each one possessing some input or output relation-
ships that quantified through the association of a conditional prob-
ability table. Generally speaking, components in the system serve 
as the building blocks and flows make their movements among the 
components.

3.1. Basic concepts

In order to define Component-based CPT for DBN formally, we, 
first, capture the breakdown structure of the system into physical or 
functional components; second, identify the input and output flows in-
cluding types and finally model the system as networked components 
with input and output flows.

3.1.1. Components

A component is defined as any of the elementary unit of a sys-
tem, including all the electrical and mechanical devices. They are in 
the form of either active components such as coolers and pumps, or 
passive components such as wires and pipes. Symbolized as a sim-
ple circle, each component has a label, with some arrows pointing 
outward or inward, acting as its output or input paths in a respective 
manner. CPT, the vital part of component models, defines how output 
values are formed on the basis of input values. Here three kinds of 
components are defined: flow-intervened components, flow-collab-
orated components and flow-dependent components. Each one can 
take on several states or failed modes, and as far as each state, there 
is a definition of time-dependent CPT. Take the pressure control as 
an example. It involves several failed modes identified from previ-
ous experience and expert judgment. An expert can predict at least 
the following software malfunctions, i.e., the low-stuck, high-stuck or 
oscillating control signal. 

3.1.1. Flows

A system can be considered as a networked topology structure 
of components along flow paths. A flow is generally defined as any 
energy, information or materials propagating from one component to 
another. Various discrete scales have been put in place in the previous 
work in engineering design to identify design dependencies between 
components in respect to the flows of material, energy or informa-
tion among functional components of systems during their concept 
development[28]. Energy, matter and information are considered ba-
sic concepts in any design problem. It is the flow of these three con-
cepts that concerns designers. Flows are equipped with some physical 
properties vital to system analysis. As regards components, they can 
have an effect on these properties with flows passing through them. 
For example, an oil flow has a possession of physical properties like 
pressure, temperature, concentration and the flow rate. Likewise, their 
range of variation is expected to get specified.

3.2. Component-based CPT

Component-based CPTs are defined in accordance with the types 
of basic components tying together the input and output flows. The 
use of a component-based CPT allows us to obtain the output values 
for combination of varying input. And thanks to the component-based 
CPTs, we can acquire a model of the propagation involving several 
failure modes in the system through the input-output flows. Then, the 
hypothesis of independence between components made for traditional 
reliability assessment is not necessary. As a matter of fact, compo-
nent-based CPTs make it possible for us to compute repercussions of 
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interdependence components to the system reliability and introduce 
uncertainty by putting probabilities in place at the interval of value 
[0, 1].

3.1.1. Flow-collaborated components and its BN formalization

A sample Component-based CPT for a flow-collaborated com-
ponent is shown in Fig.1(a) The flow-intervened component has the 
same type of flow input and output. The output serves as a function 
or functionality condition in respect to the inputs. With the input from 
another component of the system, the CPT is an internal parameter 
embedded in the component. For the purpose of reaching the con-
version algorithm from flow-intervened component to BN, we have 
adopted the following convention: Given a generic binary input flow 
or component CMP, we denote with CMP=1 the component failure 
and with CMP =0 the component normal. With the usual hypothesis 
that input flow or component failures are distributed in an exponential 
way, the probability of the occurrence of the primary event CMP=1 
at time t is exp( )tλ− × , where λ acts as the failure rate of input flow 
or component. 

Fig.1(b) demonstrated the conversion of a flow-collaborated com-
ponent. Input flow(INP)and flow-collaborated component (CMP) are 
assigned to probabilities in advance(in agreement with the probability 
of the occurrence of the primary event INP =1 or CMP=1), and output 
flow is assigned to its CPT. The output fails when flow-collaborated 
component or input flow falls into a failed state. 

3.2.1. Flow-intervened components and its BN formalization

A sample Component-based CPT for a flow-intervened compo-
nent is shown in Fig.2(a). The flow-intervened component has one 
type of flow input and another type of flow output. The output is a 
function or functionality condition of the inputs. With the input com-
ing from another component of the system, the CPT acts as an in-
ternal parameter of the component. In order to reach the conversion 
algorithm from flow-intervened component to BN, we adopt the same 
convention mentioned above.

Fig.2(b) shows the conversion of a flow-intervened component. 
Input flow(INP) is assigned prior probabilities (coincident with the 
probability of occurrence of the primary event INP=1), and flow-in-
tervened component are output flow are assigned CPT. CSCSIT[13] 
is potentially to help improve the Flow-intervened components’ CPT 
modeling for that it can provide a reliability parametrized component-
based modeling structure. In CSCSIT, a component failure occurs 
when the conceptual stress of the input flow exceeds its conceptual 
strength. Therefore, the conditional probability intP  for the compo-
nent CMP failure is given by:

 int Pr(   )INP CMPP CSte CStn= ≥  (5)

Here INPCSte is the conceptual stress of the input flow and CMPCStn

is the conceptual strength for the component CMP. One nice feature 
of the CSCSIT is that it can represent the uncertainty by conditional 

probability intP .

3.3. Time-dependent CPT

In the simplest form, as for the component in Section3.2, the com-
ponent is either in failed or work state. However, there is over one 
failure mode for a component in the general case. For example, a trac-
tion motor may be either overheating (O) or in operation (I). In our 
work, the failure modes of a component are defined by states, with a 
description of its ability or inability to output the desired flows. The 
multi-state of components can be modeled as a DBN formalization. 

Consider a traction motor with three states, which can be envis-
aged as: normal (N), overheating (O), and in operation (I). An Markov 
model of traction motor reliability is easy to build, which is shown in 
Fig.3(a). Then, independent components of the process are modeled 
by using DBN that is equivalent to an independent MC: Firstly, the 
traction motor is modeled by a discrete random variable X with states 
{N, O, I}.  Next two nodes are defined to model the random variable 
at time slices t  and t t+ ∆ : ( )CMP t  and ( )CMP t t+ ∆ . Kinked by an 
arc representing the dependency between the component states at time 
slice t  and its states at time slice t t+ ∆ , these nodes are both ren-
dered a description by the states {N, O, I}.  With the assumption of the 
constant failure rates of normal (N), overheating (O) and in operation 
(I) denoted as 1λ , 2λ  and 3λ , usually estimated by using historical 
data, the aforementioned transition gets modeled in the corresponding 
DBN through the conditional probability. In order to get clarified, the 
Markov model and the equivalent DBN in regard to state transition 
modeling of the traction motor are demonstrated in Fig.3(b), with T1 
at t t+ ∆ , the time-dependent conditional probabilities, presented in 
Table1.

Fig. 1. Component-based CPT for a Flow-collaborated Component

Fig.3 Markov model for state transition modeling of traction motor

Fig. 2. Component-based CPT for a flow-intervened component
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4. Modeling approach

Previous sections described the necessary details and settings of 
modeling a system. Her we move on to the second phase involving 
the procedure of the automated DBN construction, where a Breadth-
First-Search (BFS) algorithm works on the provided model to gener-
ate the Structure of DBN in the system. The depth-first search is used 
to identify reencountered events, and practise some simplification in 
the end. The main interest in such an approach to render a reliability 
modeling from DBN consists in the propagation of the components’ 
failure through the input/output flow of the system. However, the op-
eration to model complex systems makes a methodology a necessity 
in an effort to get the DBN’s structure specified, with four main steps 
involved in the proposed modeling approach as follows:

Create the model of component and input/output flows for the 1. 
analysis of system.
Identify the target event and system boundaries that have an 2. 
active influence on the propagation of components’ failures.
Structure a learning of DBN based on BFS.3. 
We will endeavor to formalize the DBN from this System rep-4. 
resentation.

4.1. Step 1: System modeling 

With the previous concepts introduced, we are allowed to model 
a variety of complex technical systems, including both configuration 
network and CPT description. The former’s configuration is simply 
modeled with appropriate components to get connected to each other 
in a desired manner. The components regarding CPT will simulate 
how the system operates in a comprehensive way. As far as the system 
modeling in DBN construction is concerned, we will have two proce-
dures illustrated in an explicit way in this step.

Malfunction knowledge acquisi-1) 
tion: Previous resources in regard 
to malfunctioning knowledge are 
supposed to be acquired in the first 
place in an effort to offer a basis for 
System modeling. The resources 
can be obtained in two aspects: 
empirical knowledge from domain 
experts and the accepted knowledge 
from existing design and construc-
tion standards. The collected knowl-
edge can be expressed in table.2 

The components of EMU traction system are listed in the first 
row and the column in table.2, with their meanings queried 
to what is listed in Section 5.1 and the connection between 
components is represented by the flow of energy, matter and 
information.
Configuration model creation: Developed from a direct map-2) 
ping of the functional model to generic components by using 
the input and output flows, the configuration model represents 
the actual design under consideration. Called the component 
basis and the flow taxonomy, a dictionary of flows and com-
ponents as introduced in [27,17], is presented in the methodol-
ogy involved in this paper, where the configuration layout of 
the system is captured by means of configuration flow graphs 
(CFGs), with blocks representing system components and 
lines connecting the blocks the material, energy, or informa-
tion among the components( to be clarified, with solid lines 
representing material, dashed lines energy and dash dotted 
lines signals). An example of CFG is shown in Fig.4.

4.2.   Step 2: Target event identification

A target event is defined by assigning specific 
values to some of the system parameters. The tar-
get identification process involves two steps:

System boundaries identification: we firstly de-1) 
termine the border of configuration model. The hy-
pothetical lines, which are covered by BFS algorithm 
to determine the lines, are called system boundaries. 
A component located at system boundary is a start-
ing point for the BFS algorithm. 

Target event: We can specify any state of the start-2) 
ing point as a target event, including some parameters 
of a flow, like temperature pressure, flow rate, or 
pressure. The values can be selected within the range 
of these parameters. Under the definition of a sample 
target event, the output of pump p2 is zero or the tem-
perature of flow f1 is high. Then, a DBN synthesis 
algorithm starts from the point of occurrence of the 
target event, and relevant components, after which 

Fig. 4. Configuration flow graphs of EMU traction system

Table 1. Time-dependent CPT of the Traction Motor at t t+ ∆

( )CMP t N O I

( )CMP t t+ ∆

N ( ) ( )1 3exp +exp 1t tλ λ− ×∆ − ×∆ − 11 exp( )tλ− − ×∆ 31 exp( )tλ− − ×∆

O 0 2exp( )tλ− ×∆ 21 exp( )tλ− − ×∆

I 0 0 1

Table 2. Component connection table of EMU traction system

Compo-
nents TT 4QC AUX TCU INV CF TS TM

TT Energy

4QC Energy Energy

AUX Energy

TCU Informa-
tion

Informa-
tion

INV Energy

CF Matter

TS Informa-
tion

TM Informa-
tion
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the system reliability condition can be determined by tracing 
back all possible paths ending into the target event.

4.3. Step 3: DBN synthesis

A DBN construction is developed in this stage to integrate the 
configuration of the system in a simultaneous way, with the target 
event defined by what is completed in the previous step. What is 
mainly involved in procedure of the DBN construction is a BFS algo-
rithm to acquire all the paths leading into the target event. Depth-first 
search is one of the basic algorithms regarding graph theory, which is 
commonly employed to a test in connectivity or compute the shortest 
paths of underweighted graphs of single source [3]. With the target 
event is defined and all of the required CPT settings completed, the 
BFS algorithm is supposed to start from the point of occurrence of 
the target event, and examine the CPT of the components to acquire 
all of their potential causes. The algorithm switches from one compo-
nent to another in a reve rse direction of the flows. The synthesis of a 
DBN construction involves a determination of the system boundaries, 
network structure, as well as the Markov chain process, during which 
process three procedures are illustrated explicitly as follows:

Component added (BFS tree): Starting from the target event, 1) 
the frontier of BFS makes an outward expansion with each 
step, visiting all of the same-depth components before visit-
ing another at the next depth. Within a step of such top-down 
approach, each component checks all of its neighbors to see if 
there are overlooked ones, with its CPT searching to locate the 
rows with the output value of interest. In case of a CPT with 
one component leading to that output value, the previously un-
visited component will be added to the frontier and marked as 
visited by setting its parent variable. The procedure is contin-
ued until each component at the system boundary is touched. 
This algorithm yields a BFS tree and The pseudo code is de-
tailed as Table.3.

DBN Structure learning: 2) 
Structure learning aims at figuring out a proper directed acy-

clic graph (DAG), and confirming the failure mechanism among 
nodes. In accordance with the establishment of BFS tree, ex-
plicit DAG and failure mechanism among the components can 
then be revealed by the input and output flows. The definition of 
the failure mechanism is formalized at the level of the system, 
while the description of the failure mode is made at the level of 
component. In line with this functioning, the malfunctioning of 
the system is induced with a consideration of the normal and 
abnormal states of the components, with every component in 

the real-world situation represented by a Bayesian node. When a com-
ponent is considered in the BFS algorithm, the BN formalization of its 
CPT is created, with the rows involving the output value of interest set 
as its inputs. Each of these inputs will be checked for need to further 
expand. However, with this multi-state components considered, the 
DBN formalization of its CPT is created and two nodes are defined 
to model the variable in a random way at time slices t  and t t+ ∆ . An 
example of traction motor(TM) is shown in Fig. 5.

In Fig. 5, there are CF (cooling fan), TM Flow-collaborated, INV 
(traction inverter) and TMF low-intervened components. TM itself is a 
Time-dependent component. Based on the generation principle of CPT, 
Fig. 5(a) can be transformed into Fig. 5(b) by structure learning.

5. Example

5.1. DBN model of EMU traction system 

The CRH5 high-speed EMU is designed for a speed of 250 km/h, 
which consists of two symmetrical traction units (Mc(1), M2(2), 
TP(3)and M2(4) comprise tractions of unit 1; T2(5), TPB(6), MH(7) 
and Mc(8) comprise traction unit 2).Modern mechatronics technol-
ogy and its new features have led to a continuously improvement 
of the construction of the traction unit structures. A traction unit 
mainly includes traction transformer(TT), auxiliary inverter(AUX), 
traction inverter(INV), traction control unit(TCU), four-quardant 
rectifier(4QC), cooling fan(CF), traction motor(TM) and its tempera-
ture sensor(TS). The traction unit can be highly complex due to the 
systematic use of new technologies and be functional dependency due 
to the interactions between system functions with the characteristics 
of a variety of structures. 

In traction unit 1, four-quardant rectifier obtains power through 
the traction transformer at the bottom of the vehicle, with the power 
transferred to the traction inverter and the auxiliary inverter. Traction 
control unit gets power through the auxiliary inverter and control the 
air volume of fan following the signals collected by temperature sen-
sor, Traction inverter is connected to the traction motors through the 
terminal blocks of traction inverter. The traction motors have a cool-
ing fan and a temperature sensor in order to monitor and reduce the 
motor temperature. Mechanical energy from the output of the traction 
motor is delivered to the wheels through the OUT1. Fig. 6(a) shows 
the configuration model of the traction system of CRH5. According to 
the DBN modeling approach proposed in Section 4, we have chosen 

Table 3. Pseudo code of BFS

breadth-first-search (components, target event)

frontier ⟵ { target event }
next⟵ {}
parents⟵ [−1,−1, . . . ,−1]
while frontier= {} do
for c ∊ frontier do
for n ∊ neighbors[c] do
if parents[n] = −1 then
parents[n]⟵ c
next⟵ next ∪ {n}
end if
end for
end for
frontier⟵ next
next⟵ {}
end while
return tree

Fig. 5. Structure Learning of Traction Motor(TM)

Fig. 6. DBN Model of EMU Traction System
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energy output of traction motors OUT1 as a target event and a certain 
BFS tree is shown in Fig. 6(b).Then, the structure learning of DBN 
is based on the DBN formalization of components’ CPTs, and finally, 
we obtained the DBN shown as Fig. 6(c).

5.2. Reliability evaluation

Within the failure statistic data of the traction system of CRH5 
which is running in Beijing- Harbin high-speed railway, we have con-
ducted a calculation of the reliability indexes of the CRH5 [4,6,21], 
with the time range set from September 15, 2011 to June 20, 2015 
respectively. With such an immense amount of data, we have just pre-
sented the results with respect to the reliability indexes of the compo-
nents mounted on the traction of unit 1 which is running in Beijing- 
Harbin railway. The results are presented in Table.4. In Table.4, where 
MDBF is the abbreviation of Mean Distance Between Failures.

Table.4 Reliability Indexes of the Components 

Component Number of 
failure

Average failure 
Rate(Time/1E5km) MDBF(1E5km)

TM 89 0.003415 292.8258

TCU 113 0.005621 177.9043

TT 77 0.002906 344.1156

INV 85 0.003205 312.0125

4QC 75 0.002655 376.6478

TS 121 0.006528 153.1863

AUX 80 0.003137 318.7759

CF 31 0.001312 762.1951

The reliability evaluation phase of 
the traction system is established with 
the application of Netica software shown 
in Fig.7. Take the traction system as 
an example, parent nodes TM_0, TS, 
AUX,TCU_0, TT_0, INV and 4QC at the 
component state layer stand for the states of components, excluding 
the faults of components. OUT, the unique child node represents the 
state of the traction system. Child node OUT has two states, i.e., nor-
mal one and failed one, and the probability that the normal one of 
OUT represents the value of the system reliability. For the purpose of 
modeling the temporal evolution of a system, we have selected two 
time slices for multi-states components, e.g., TM represents the cur-
rent time step of traction motor, and TM_0 the previous time step. The 
time interval Δt could be 1E5 km or 1E5 h. A wealth of time slices is 
in agreement with a smaller the value of Δt, hence rendering Netica 

a longer running time. Here the DBNs are extended 1E5 km, and the 
DBNs structure of what is extended within the 40E5 km is presented 
in Fig.8.

When no component failure occurs, time interval, Δt, the system 
reliability is rarely affected for the reason that the extension of DBNs 
and the conditional probability of time slices involving each compo-
nent are rooted on the exponential distribution of components. As we 
have expected, with the increase in time, the reliability of the trac-
tion system decreases in a corresponding way. According to the DBN 
model of the traction system and what is obtained from the reliability 
indexes of the components of traction system, we can calculate that: 
In the 40E5km, the system still possess a reliability of 73.326%, with 
an indication of t sufficient secure on the part of the traction system.

When a certain component is abnormal, a calculation and plot of 
the reliability values shall be carried out. As is shown in Fig.8 (a), 
there comes a rapid decrease of reliability before the overheating of 

traction motor is detected, and once the traction 
motor goes in operation, the reliability of trac-
tion system decreases to 0 with the immediate 
overheating of traction motor after the system 
is started, rendering the motor a fatal weakness 
of the traction system and making it a necessity 
the improvement of the reliability of the traction 
motor value to the fullest degree.

As is illustrated in Fig.8 (b), there comes the 
fault of auxiliary inverter immediately after the 
system is started, with the reliability decreasing 
to a lower level lower when the no fault occurs. 
In the 40E5km, the system still possesses a reli-
ability of 68.28%. With the occurrence of the 
fault at a certain intermediate time, the reliabil-
ity decreases to the value when the fault occurs 
at 0t = . This arises from the fact that the aux-
iliary inverter is a flow-intervened component, Fig. 7. The Reliability Evaluation Phase of the Traction System

Fig. 8. Reliability of the Traction System without Components’ Failure

Fig. 9. Reliability of the traction system when a certain component is abnor-
mal 

Table. 5 Two Case of Reliability Evaluation 

Component TM TCU TT INV 4QC TS AUX CF

Case1 Overheating Normal Normal Normal Normal Normal Normal Normal

Case2 Normal Normal Normal Normal Normal Normal Fail Normal
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and its failure has little effect on the normal operation of the traction 
system, but with a decrease of the reliability regarding the entire sys-
tem.

6. Conclusion

DBN serves as a powerful tool for knowledge representation and 
reasoning in a complex mechatronic system. A new system of mod-
eling approach for DBN generation is presented in this paper, with the 
introduction of a component-based configuration model made up of 
some components and different types of flows propagating through 
them and a Breadth-First-Search (BFS) algorithm for the automated 
construction of the DBN model. The Configuration model comprises 
some components and different types of flows propagating through 
them, with each component possessing a CPT description of its input–
output flows relations. As the size and complexity of the system can-
not be tractably modeled as a BN, a Breadth-First-Search (BFS) al-
gorithm is introduced for automated construction of the DBN model. 
Given that traditional DBN framework can not be tractably modeled, 
our method offers a good description of functional and temporal de-
pendencies between components, which turns out to be a satisfying 
solution with regard to the modeling of complex systems.

We have demonstrated in this paper the application of the pro-
posed approach to reliability assessment of traction drive system re-
garding high-speed EMUs, with the reliabilities evaluated by means 

of netica, taking into account two important features of dependency 
between components and multi-state components. An application 
of the proposed Bayesian network models facilitates the evaluation 
of the reliability of traction drive system at any given time. Results 
have established that the DBN-based approach can perform in a 
more accurate way than the traditional static one in regard to mode-
ling the evolution of the probabilistic dependencies within a complex 
system over time.

It may be concluded that, with the use of DBN in the reliability 
assessment of complex mechatronic systems, we can not only avoid 
problems such as the failures’ dependencies and the multi-state ele-
ments, a common thing in traditional static approach, but also help an-
alysts to conduct probability updating, which is of great significance 
in the real-time monitoring, and evaluation of mechatronic systems. 
Future work will place an emphasis on the investigation of a real-time 
intelligent reliability evaluation software with the application of auto-
matic data acquisition and the proposed DBN modeling approach for 
an entire system, such as a EMU system equipped with thousands of 
flow-intervened or flow-collaborated components.
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