PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Growth Kinetics and Toxicity of Pseudomonas fredriksbergsis Grown on Phenol as Sole Carbon Source

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phenol is one of the main pollutants that have a serious impact on the environment and can even be very critical to human health. The biodegradation of phenol can be considered an increasingly important pollution control process. In this study, the degradation of phenol by Pseudomonas fredriksbergsis was investigated for the first time under different growth conditions. Six different initial concentrations of phenol were used as the primary substrate. Culture conditions had an important effect on these cells' ability to biodegrade phenol. The best growth of this organism and its highest biodegradation level of phenol were noticed at pH 7, temperature 28 °C, and periods of 36 and 96 h, respectively. The highest biodegradation rate was perceived at 700 mg/L initial phenol concentration. Approximately 90% of the phenol (700 mg/L) was removed in less than 96 hours of incubation time. It was found that the Haldane model best fitted the relationship between the specific growth rate and the initial phenol concentration, whereas the phenol biodegradation profiles time could be adequately described by the modified Gompertz model. The parameters of the Haldane equation are: 0.062 h−1, 11 ppm, and 121 ppm for Haldane’s maximum specific growth rate, the half-saturation coefficient, and the Haldane’s growth kinetics inhibition coefficient, respectively. The Haldane equation fitted the experimental data by minimizing the sum of squared error (SSR) to 1.36×10-3.
Rocznik
Strony
251--263
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, College of Engineering, Mutah University, Karak, 61710, Jordan
  • Biology Department, College of Science, Mutah University, Mutah, Karak, 61710, Jordan
  • Prince Faisal Center for Dead Sea, Environmental and Energy Research, Mutah University, Karak, 61710, Jordan
  • Biology Department, College of Science, Mutah University, Mutah, Karak, 61710, Jordan
  • Department of Medical Laboratory Analysis, College of Science, Mutah University, Mutah, Karak, 61710, Jordan
  • Department of Chemistry, College of Science, Mutah University, Karak, 61710, Jordan
  • Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Karak, 61710, Jordan
  • Biology Department, College of Science, Mutah University, Mutah, Karak, 61710, Jordan
Bibliografia
  • 1. Abboud M.M., Aljundi I.H., Khleifat K.M., Dmour S. 2010. Biodegradation kinetics and modeling of whey lactose by bacterial hemoglobin VHb-expressing Escherichia coli strain. Biochemical Engineering Journal, 48, 166-172.
  • 2. Abboud M.M., Khleifat K.M., Batarseh M., Tarawneh K.A., Al-Mustafa A., Al-Madadhah M. 2007. Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme Microbial Technology, 41, 432-439.
  • 3. Adetitun D.O., Akinbowale A.O., Dutta K. 2021. Biodegradation of phenol by a newly isolated Pseudomonas sp. strain B1 from tiger nuts. Covenant Journal of Physical and Life Sciences, 8.
  • 4. Aisami A., Yasid N.A., Abd Shukor M.Y. 2020. Optimization of Cultural and Physical Parameters for Phenol Biodegradation by Newly Identified Pseudomonas sp. AQ5-04. Journal of Tropical Life Science, 10, 223-233.
  • 5. Al-Asoufi A., Khlaifat A., Tarawneh A., Alsharafa K., Al-Limoun M., Khleifat K. 2017. Bacterial Quality of Urinary Tract Infections in Diabetic and Non Diabetics of the Population of Ma’an Province, Jordan. Pakistan Journal of Biological Sciences, 20, 179-188.
  • 6. Althunibat O.Y., Qaralleh H., Al-Dalin S.Y.A., Abboud M., Khleifat K., Majali I.S., Aldal’in H., Rayyan W.A., Jaafraa A. 2016. Effect of thymol and carvacrol, the major components of Thymus capitatus on the growth of Pseudomonas aeruginosa. Journal of Pure and Applied Microbiology, 10, 367-374.
  • 7. Alva V.A., Peyton B.M. 2003. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environmental Science and Technology, 37, 4397-4402.
  • 8. Andersen S.M., Johnsen K., Sørensen J., Nielsen P., Jacobsen C.S. 2000. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. International Journal of Systematic Evolutionary Microbiology, 50, 1957-1964.
  • 9. Aravind M.K., Kappen J., Varalakshmi P., John S.A., Ashokkumar B. 2020. Bioengineered Graphene Oxide Microcomposites Containing Metabolically Versatile Paracoccus sp. MKU1 for Enhanced Catechol Degradation. ACS Omega, 5, 16752-16761.
  • 10. Bakhshi Z., Najafpour G., Kariminezhad E., Pishgar R., Mousavi N., Taghizade T. 2011. Growth kinetic models for phenol biodegradation in a batch culture of Pseudomonas putida. Environmental Technology, 32, 1835-1841.
  • 11. Barik M., Das C.P., Verma A.K., Sahoo S., Sahoo N.K. 2021. Metabolic profiling of phenol biodegradation by an indigenous Rhodococcus pyridinivorans strain PDB9T N-1 isolated from paper pulp wastewater. International Biodeterioration and Biodegradation, 158, 105168.
  • 12. Das B., Mandal T.K., Patra S. 2016. Biodegradation of phenol by a novel diatom BD1IITG-kinetics and biochemical studies. International Journal of Environmental Science and Technology, 13, 529-542.
  • 13. Der Yang R., Humphrey A.E. 1975. Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnology and Bioengineering, 17, 1211-1235.
  • 14. El-Naas M.H., Al-Zuhair S., Makhlouf S. 2010. Batch degradation of phenol in a spouted bed bioreactor system. Journal of Industrial and Engineering Chemistry, 16, 267-272.
  • 15. Gong Y., Ding P., Xu M.-J., Zhang C.-M., Xing K., Qin S. 2021. Biodegradation of phenol by a halotolerant versatile yeast Candida tropicalis SDP-1 in wastewater and soil under high salinity conditions. Journal of Environmental Management, 289, 112525.
  • 16. Kanavaki I., Drakonaki A., Geladas E.D., Spyros A., Xie H., Tsiotis G. 2021. Polyhydroxyalkanoate (PHA) Production in Pseudomonas sp. phDV1 Strain Grown on Phenol as Carbon Sources. Microorganisms, 9, 1636.
  • 17. Ke Z., Xiangling W., Jian C., Jia C. 2019. Biodegradation of diethyl phthalate by Pseudomonas sp. BZD-33 isolated from active sludge’, IOP Conference Series: Earth and Environmental Science. IOP Publishing.
  • 18. Khleifat K., Abboud M., Al-Shamayleh W., Jiries A., Tarawneh K. 2006a. Effect of chlorination treatment on gram negative bacterial composition of recycled wastewater. Pakistan Journal of Biological Sciences, 9, 1660-1668.
  • 19. Khleifat K. & Abboud M.M. 2003. Correlation between bacterial haemoglobin gene (vgb) and aeration: their effect on the growth and α‐amylase activity in transformed Enterobacter aerogenes. Journal of Applied Microbiology, 94, 1052-1058.
  • 20. Khleifat K.M. 2007. Biodegradation of phenol by Actinobacillus sp.: Mathematical interpretation and effect of some growth conditions. Bioremediation Journal, 11, 103-112.
  • 21. Khleifat K.M., Abboud M.M., Al-Mustafa A.H., Al-Sharafa K.Y. 2006b. Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of β-galactosidase in Enterobacter aerogenes. Current Microbiology, 53, 277-281.
  • 22. Khleifat K.M., Abboud M.M., Omar S.S., Al-Kurishy J.H. 2006c. Urinary tract infection in South Jordanian population. Journal of Medical Sciences, 6, 5-11.
  • 23. Khleifat K.M., Al-Limoun M.O., Alsharafa K.Y., Qaralleh H., Al Tarawneh A.A. 2019. Tendency of using different aromatic compounds as substrates by 2, 4-DNT dioxygenase expressed by pJS39 carrying the gene dntA from Burkholderia sp. strain DNT. Bioremediation Journal, 23, 22-31.
  • 24. Khleifat K.M., Shawabkeh R., Al-Majali I., Tarawneh K. 2007. Biodegradation kinetics of phenol by Klebsiella oxytoca: effect of carbon and Nitrogen source. Fresenius Environmental Bulletin, 16, 489-494.
  • 25. Khleifat K.M., Tarawneh K.A., Wedyan M.A., Al-Tarawneh A.A., Al Sharafa K. 2008. Growth kinetics and toxicity of Enterobacter cloacae grown on linear alkylbenzene sulfonate as sole carbon source. Current Microbiology, 57, 364-370.
  • 26. Kumaran P. & Paruchuri Y.L. 1997. Kinetics of phenol biotransformation. Water Research, 31, 11-22.
  • 27. Leven L. & Schnürer A. 2005. Effects of temperature on biological degradation of phenols, benzoates and phthalates under methanogenic conditions. International Biodeterioration and Biodegradation, 55, 153-160.
  • 28. Lin Y.-H. & Gu Y.-J. 2021. Biodegradation Kinetic Studies of Phenol and p-Cresol in a Batch and Continuous Stirred-Tank Bioreactor with Pseudomonas putida ATCC 17484 Cells. Processes, 9, 133.
  • 29. Liu J., Wang Q., Yan J., Qin X., Li L., Xu W., Subramaniam R., Bajpai R.K. 2013. Isolation and characterization of a novel phenol degrading bacterial strain WUST-C1. Industrial and Engineering Chemistry Research, 52, 258-265.
  • 30. Liu Y.J., Zhang A.N., Wang X.C. 2009. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochemical Engineering Journal, 44, 187-192.
  • 31. Malhotra M., Gupta D., Sahani J., Singh S. 2021. Microbial Degradation of Phenol and Phenolic Compounds, Recent Advances in Microbial Degradation. Springer.
  • 32. Margesin R. & Schinner F. 1997. Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Applied Microbiology and Biotechnology, 47, 462-468.
  • 33. Marks T.S., Smith A.R.W., Quirk A.V. 1984. Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Applied Environmental Microbiology, 48, 1020-1025.
  • 34. Mohite B.V. 2015. Efficient Biotransformation Of Phenol And Its Derivatives Using Streptococcus Epidermis By Catechol 2, 3-Dioxygenase Metabolism. Environmental Engineering and Management Journal, 14.
  • 35. Nandy S., Arora U., Tarar P., Viggor S., Jõesaar M., Kivisaar M., KapleyA. 2021. Monitoring the growth, survival and phenol utilization of the fluorescenttagged Pseudomonas oleovorans immobilized and free cells. Bioresource Technology, 338, 125568.
  • 36. Onysko K.A., Budman H.M., Robinson C.W. 2000. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnology and Bioengineering, 70, 291-99.
  • 37. Pawlowsky U. & Howell J.A. 1973. Mixed culture biooxidation of phenol. I. Determination of kinetic parameters. Biotechnology and Bioengineering, 15, 889-896.
  • 38. Qaralleh H., Khleifat K.M., Al-Limoun M.O., Alzedaneen F.Y., Al-Tawarah N. 2019. Antibacterial and synergistic effect of biosynthesized silver nanoparticles using the fungi Tritirachium oryzae W5H with essential oil of Centaurea damascena to enhance conventional antibiotics activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10, 025016.
  • 39. Rai A., Gowrishetty K.K., Singh S., Chakrabarty J., Bhattacharya P., Dutta S. 2021. Simultaneous Bioremediation of Cyanide, Phenol, and Ammoniacal-N from Synthetic Coke-Oven Wastewater Using Bacillus sp. NITD 19. Journal of Environmental Engineering, 147, 04020143.
  • 40. Rughöft S., Vogel A.L., Joye S.B., Gutierrez T., Kleindienst S. 2020. Starvation-dependent inhibition of the hydrocarbon degrader Marinobacter sp. TT1 by a chemical dispersant. Journal of Marine Science and Engineering, 8, 925.
  • 41. Samadi A., Sharifi H., Nejad Z.G., Hasan-Zadeh A., Yaghmaei S. 2020. Biodegradation of 4-Chlorobenzoic Acid by Lysinibacillus macrolides DSM54T and Determination of Optimal Conditions. International Journal of Environmental Research, 1-10.
  • 42. Saravanan P., Pakshirajan K., Saha P. 2011. Biodegradation kinetics of phenol by predominantly Pseudomonas sp. in a batch shake flask. Desalination and Water Treatment, 36, 99-104.
  • 43. Shawabkeh R., Khleifat K.M., Al-Majali I., Tarawneh K. 2007. Rate of biodegradation of phenol by Klebsiella oxytoca in minimal medium and nutrient broth conditions. Bioremediation Journal, 11, 13-19.
  • 44. Suhaila Y.N., Hasdianty A., Maegala N.M., Aqlima A., Hazwan A.H., Rosfarizan M., Ariff A.B. 2019. Biotransformation using resting cells of Rhodococcus UKMP-5M for phenol degradation. Biocatalysis and Agricultural Biotechnology, 21, 101309.
  • 45. Swain G., Sonwani R.K., Giri B.S., Singh R.S., Jaiswal R.P., Rai B.N. 2021. A study of external mass transfer effect on biodegradation of phenol using low‐density polyethylene immobilized Bacillus flexus GS1 IIT (BHU) in a packed bed bioreactor. Water and Environment Journal, 35, 285-294.
  • 46. Tarawneh K.A., Al‐Tawarah N.M., Abdel‐Ghani A.H., Al‐Majali A.M., Khleifat K.M. 2009. Characterization of verotoxigenic Escherichia coli (VTEC) isolates from faeces of small ruminants and environmental samples in Southern Jordan. Journal of Basic Microbiology, 49, 310-317.
  • 47. Tomei M.C., Angelucci D.M., Clagnan E., Brusetti L. 2021. Anaerobic biodegradation of phenol in wastewater treatment: achievements and limits. Applied Microbiology and Biotechnology, 1-30.
  • 48. Wang S.-J., Loh K.-C. 1999. Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme and Microbial Technology, 25, 177-184.
  • 49. Wen Y., Li C., Song X., Yang Y. 2020. Biodegradation of Phenol by Rhodococcus sp. Strain SKC: Characterization and Kinetics Study. Molecules, 25, 3665.
  • 50. Youssef M., El-Shatoury E.H., Ali S.S., El-Taweel G.E. 2019. Enhancement of phenol degradation by free and immobilized mixed culture of Providencia stuartii PL4 and Pseudomonas aeruginosa PDM isolated from activated sludge. Bioremediation Journal, 23, 53-71.
  • 51. Zang T., Wu H., Yan B., Zhang Y., Wei C. 2021. Enhancement of PAHs biodegradation in biosurfactant/phenol system by increasing the bioavailability of PAHs. Chemosphere, 266, 128941.
  • 52. Zhao T., Gao Y., Yu T., Zhang Y., Zhang Z., Zhang L., Zhang L. 2021. Biodegradation of phenol by a highly tolerant strain Rhodococcus ruber C1: Biochemical characterization and comparative genome analysis. Ecotoxicology and Environmental Safety, 208, 111709.
  • 53. Zou S., Zhang B., Yan N., Zhang C., Xu H., Zhang Y., Rittmann B.E. 2018. Competition for molecular oxygen and electron donor between phenol and quinoline during their simultaneous biodegradation. Process Biochemistry, 70, 136-143.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7e48c59-629f-4411-b694-0b140c7cda3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.