Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the mathematical model and numerical simulations of the molten steel flow by the submerged entry nozzle and the filling process of the continuous casting mould cavity are presented. In the mathematical model, the temperature fields were obtained by solving the energy equation, while the velocity fields were calculated by solving the momentum equations and the continuity equation. These equations contain the turbulent viscosity which is found by solving two additional transport equations for the turbulent kinetic energy and its rate of dissipation. In the numerical simulations, coupling of the thermal and fluid flow phenomena by changes in the thermophysical parameters of alloy depending on the temperature has been taken into consideration. This problem (2D) was solved by using the finite element method. Numerical simulations of filling the continuous casting mould cavity were performed for two variants of liquid metal pouring. The effect of the cases of pouring the continuous casting mould on the velocity fields and the solid phase growth kinetics in the process of filling the continuous casting mould was evaluated as these magnitudes have an influence on the high quality of the continuous cast steel slab.
Czasopismo
Rocznik
Tom
Strony
115--118
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Fundamentals, Częstochowa, Poland
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Fundamentals, Częstochowa, Poland
autor
- Częstochowa University of Technology, Institute of Mechanics and Machine Design Fundamentals, Częstochowa, Poland
Bibliografia
- [1] Zhao, B., Thomas, B.G., Vanka, S.P. & Omalley, R.J. (2005). Transient fluid flow and superheat transport in continuous casting of steel slabs. Metallurgical and Materials Transactions B. 36, 801-823. DOI: 10.1007/s11663-005-0083-3.
- [2] Szajnar, J., Stawarz, M., Wróbel, T., Sebzda, W., Grzesik, B. & Stępień, M. (2010). Influence of continuous casting conditions on grey cast iron structure. Archives of Materials Science and Engineering. 42(1), 45-52.
- [3] Burbelko, A., Fallus, J., Kapturkiewicz, W., Sołek, K., Drożdż, P. & Wróbel, M. (2012). Modeling of the grain structure formation in the steel continuous ingot by CAFE method. Archives of Metallurgy and Materials. 57(1), 379-384. DOI: 10.2478/v10172-012-0037-0.
- [4] Sowa, L. (2011). Effect of nozzle outlet angle on flow and temperature field in a slab continuous casting mould. Archives of Foundry Engineering. 11(2), 199-202.
- [5] Lei, S., Zhang, J., Zhao, X. & He, K. (2014). Numerical simulation of molten steel flow and inclusions motion behavior in the solidification processes for continuous casting slab. ISIJ Int. 54(1), 94-102. DOI: org/10.2355/isijinternational.54.94.
- [6] Liu, Z., Li, L., Qi, F., Li, B., Jiang, M. & Tsukihashi F. (2015). Population balance modeling of polydispersed bubbly flow in continuous-casting using multiple-size-group approach. Metallurgical and Materials Transactions B. 46(1), 406-420. DOI:10.1007/s11663-014-0192-y.
- [7] Węgrzyn-Skrzypczak, E. & Skrzypczak, T. (2014). Mathematical and numerical basis of binary alloy solidification models with substitute thermal capacity. Part II. Journal of Applied Mathematics and Computational Mechanics. 13(2), 141-147.
- [8] Miłkowska-Piszczek, K & Korolczuk-Hejnak, M. (2013). An analysis of the influence of viscosity on the numerical simulation of temperature distribution as demonstrated by the CC process. Archives of Metallurgy and Materials. 58(4), 1267-1274. DOI: 10.2478/amm-2013-0146.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7e44e2d-7921-4dc6-8da9-6d0feae9262c