Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Carbon fiber reinforced plastics (CFRPs) are widely used in aerospace structures due to their high stiffness, strength and good fatigue properties. They are however vulnerable to loads perpendicular to their plane and, while impacted, can suffer significant internal damage decreasing their overall strength. Detecting and sizing such damage is an important task of the non-destructive inspection (NDI) methods. This study was conducted to detect and quantify damage in a set of six impacted even rectangular CFRP specimens designed from a MiG-29 vertical stabilizer’s skin. The inspection was done using the ultrasonic (UT) method (based on mobile scanner – MAUS V) and the pulsed infrared thermographic (IRT) method. Each specimen’s inside and outside (impacted) surface was inspected separately with IRT, while the outside surface was then inspected with UT. UT provided the most precise measurements of the damage area, while the IRT inspection of the outside surface (which would be accessible on a real aircraft structure) provided underestimated values due to the damage’s depth and geometry.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
68--77
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wykr.
Twórcy
autor
- Air Force Institute of Technology, Księcia Bolesława 6, 01-494, Warsaw, Poland
autor
- Air Force Institute of Technology, Księcia Bolesława 6, 01-494, Warsaw, Poland
autor
- Air Force Institute of Technology, Księcia Bolesława 6, 01-494, Warsaw, Poland
autor
- Air Force Institute of Technology, Księcia Bolesława 6, 01-494, Warsaw, Poland
autor
- Air Force Institute of Technology, Księcia Bolesława 6, 01-494, Warsaw, Poland
Bibliografia
- [1] Ball, R. J. and Almond, D. P. (1998). The detection and measurement of impact damage in thick carbon fiber reinforced laminates by transient thermography. NDT&E International, Volume 31, Issue 3, June 1998, ISSN 0963-8695, pp. 165-173.
- [2] Campbell, F. (2010). Composite Mechanical Properties. in F. Campbell, Structural Composite Materials. ASM International, ISBN 978-1-61503-037-8, pp. 373-400.
- [3] Duan, Y., Zhang, H., Maldague, X. P., Ibarra-Castanedo, C., Servais, P., Genest, M. and Meng, J. (2019). Reliability assessment of pulsed thermography and ultrasonic testing for impact damage of CFRP panels. NDT&E International, Volume 102, March 2019, ISSN 0963-0695, pp. 77-83.
- [4] Garnier, C., Marie-Laetitia, P., Florent, E. and Bernard, L. (2011). The detection of aeronautical defects in situ on composite structures using Non Destructive Testing. Composite Structures, Volume 93, Issue 5, ISSN 0263-8223, pp. 1328-1336.
- [5] Gholizadeh, S. (2016). A review of non-destructive testing methods of composite materials. Procedia Structural Integrity, Volume 1, ISSN 2452-3216.
- [6] Mihai, A., Stefanescu, F., Dumitrache-Rujinski, A. and Neagu, G. (2012). Composite Materials Flaws Detection and Measurement by Infrared Thermography. University Politechnica of Bucharest.
- [7] Nettles, A. T. and Hodge, A. J. (1997). NASA/TM-97-206317 Report: The Impact Response of Carbon/EpoxyLaminates. Alabama: Marshall Space Flight Center, NASA.
- [8] Roach, D. P. and Rice, T. M. (2016). DOT/FAA/TC-15/4 Report: A Quantitative Assessment of Advanced Nondestructive Inspection Techniques for Detecting Flaws in Composite Laminate Aircraft Structures. New Jersey: Federal Aviation Administration.
- [9] Shepard, S. M. (2007). Flash Thermography of Aerospace Composites. IV Conferencia Panamericana de END. Thermal Wave Imaging, Inc.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7e254d2-5549-453b-a1a3-0962842ef1ec