PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental analysis of transverse stiffness distribution of helical compression springs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of an experimental analysis of the distribution of transverse stiffness of cylindrical compression helical springs with selected values of geometric parameters. The influence of the number of active coils and the design of the end coils on the transverse stiffness distribution was investigated. Experimental tests were carried out for 18 sets of spring samples that differed in the number of active coils, end-coil design and spring index, and three measurements were taken per sample, at two values of static axial deflection. The transverse stiffnesses in the radial directions were tested at every 30 angle. A total of 1,296 measurements were taken, from which the transverse stiffness distributions were determined. It was shown that depending on the direction of deflection, the differences between the highest and lowest value of transverse stiffness of a given spring can exceed 25%. The experimental results were compared with the results of the formulas for transverse stiffness available in the literature. It was shown that in the case of springs with a small number of active coils, discrepancies between the average transverse stiffness of a given spring and the transverse stiffness calculated based on literature relations can reach several tens of percent. Analysis of the results of the tests carried out allowed conclusions to be drawn, making it possible to estimate the suitability of a given computational model for determining the transverse stiffness of a spring with given geometrical parameters.
Rocznik
Strony
95--103
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Maintenance, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Maintenance, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Maintenance, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Cieplok G, Wójcik K. Conditions for self-synchronization of inertial vibrators of vibratory conveyors in general motion. Journal of Theo-retical and Applied Mechanics. 2020;58(2): 513–524. https://doi.org/10.15632/jtam-pl/119023
  • 2. Lee CM, Goverdovskiy VN. A multi-stage high-speed railroad vibra-tion isolation system with ‘negative’ stiffness. Journal of Sound and Vibration. 2012;331(4): 914–921. https://doi.org/10.1016/j.jsv.2011.09.014
  • 3. Lu Z., Wang X., Yue K., Wei J., Yang Z. Coupling model and vibra-tion simulations of railway vehicles and running gear bearings with multitype defects. Mechanism and Machine Theory. 2021;157: 104215.https://doi.org/10.1016/j.mechmachtheory.2020.104215
  • 4. Vazquez-Gonzalez B., Silva-Navarro G. Evaluation of the Autopara-metric Pendulum Vibration Absorber for a Duffing System. Shock and Vibration. 2008;15( 3–4): 355–368. https://doi.org/10.1155/2008/827129
  • 5. Yıldırım V. Exact Determination of the Global Tip Deflection of both Close-Coiled and Open-Coiled Cylindrical Helical Compression Springs having Arbitrary Doubly-Symmetric Cross-Sections. Interna-tional Journal of Mechanical Sciences. 2016;115–116: 280–298. https://doi.org/10.1016/j.ijmecsci.2016.06.022
  • 6. Paredes M. Enhanced Formulae for Determining Both Free Length and Rate of Cylindrical Compression Springs. Journal of Mechanical Design. 2016;138(2): 021404.https://doi.org/10.1115/1.4032094
  • 7. Liu H., Kim D. Effects of end Coils on the Natural Frequency of Automotive Engine Valve Springs. International Journal of Automo-tive Technology. 2009;10(4): 413–420. https://doi.org/10.1007/s12239-009-0047-8
  • 8. Haringx J. A. On Highly Compressible Helical Springs and Rubber Rods, and their Application for Vibration-Free Mountings. Philips re-search reports. 1949;4: 49–80.
  • 9. Wittrick W. H. On Elastic Wave Propagation in Helical Springs. International Journal of Mechanical Sciences. 1966;8(1): 25–47. https://doi.org/10.1016/0020-7403(66)90061-0
  • 10. Jiang W., Jones W. K., Wang T. L., Wu K. H. Free Vibration of Heli-cal Springs. Journal of Applied Mechanics.1991;58(1): 222–228.https://doi.org/10.1115/1.2897154
  • 11. Kobelev V. Effect of Static Axial Compression on the Natural Fre-quencies of Helical Springs. Multidiscipline Modeling in Materials and Structures. 2014;10: 379–398. https://doi.org/10.1108/MMMS-12-2013-0078
  • 12. Mottershead J. E. Finite Elements for Dynamical Analysis of Helical Rods. International Journal of Mechanical Sciences. 1980;22(5): 267–283. https://doi.org/10.1016/0020-7403(80)90028-4
  • 13. Taktak M., Dammak F., Abid S., Haddar M. A Finite Element for Dynamic Analysis of a Cylindrical Isotropic Helical Spring. Journal of Me-chanics of Materials and Structures. 2008;3(4): 641–658. http://doi.org/10.2140/jomms.2008.3.641
  • 14. Michalczyk K. Analysis of Lateral Vibrations of the Axially Loaded Helical Spring. Journal of Theoretical and Applied Mechanics. 2015;53(3): 745-755. https://doi.org/10.15632/jtam-pl.53.3.745
  • 15. Michalczyk K., Bera P. A Simple Formula for Predicting the First Natural Frequency of Transverse Vibrations of Axially Loaded Helical Springs. Journal of Theoretical and Applied Mechanics. 2019;57(3): 779–790. https://doi.org/10.15632/jtam-pl/110243
  • 16. Berger C., Kaiser B. Results of Very High Cycle Fatigue Tests on Helical Compression Springs. International Journal of Fatigue. 2006;28(11): 1658–1663. https://doi.org/10.1016/j.ijfatigue.2006.02.046
  • 17. Zhou C. et al. An Investigation of Abnormal Vibration – Induced Coil Spring Failure in Metro Vehicles. Engineering Failure Analysis. 2020;108: 104238. https://doi.org/10.1016/j.engfailanal.2019.104238
  • 18. Sobaś M. Analysis of the Suspension of Freight Wagons Bogies Type Y25. Pojazdy Szynowe. 2014;3: 33–44.
  • 19. Swacha P., Kotyk M., Ziółkowski W., Stachowiak R. Stand for testing the fatigue life of compression springs. Developments in Mechanical Engineering. 2021;17(9): 73–85. https://doi.org/10.37660/dme.2021.17.9.6
  • 20. Czaban J., Szpica D. The didactic stand to test of spring elements in vehicle suspension. Acta Mechanica et Automatica. 2009;3(1): 33–35.
  • 21. Gross S. Berechnung und Gestaltung von Metallfedern, Springer-Verlag Berlin Heidelberg GmbH. 1951.
  • 22. Wahl A. M. Mechanical Springs. Penton Publishing Company. 1944.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7e25204-bb1b-4e1b-b56c-5679b7964521
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.