PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Software developers insert log statements in the source code to record program execution information. However, optimizing the number of log statements in the source code is challenging. Machine learning based within-project logging prediction tools, proposed in previous studies, may not be suitable for new or small software projects. For such software projects, we can use cross-project logging prediction. Aim: The aim of the study presented here is to investigate cross-project logging prediction methods and techniques. Method: The proposed method is ECLogger, which is a novel, ensemble-based, cross-project, catch-block logging prediction model. In the research We use 9 base classifiers were used and combined using ensemble techniques. The performance of ECLogger was evaluated on on three open-source Java projects: Tomcat, CloudStack and Hadoop. Results: ECLoggerBagging, ECLoggerAverageVote, and ECLoggerMajorityVote show a considerable improvement in the average Logged F-measure (LF) on 3, 5, and 4 source!target project pairs, respectively, compared to the baseline classifiers. ECLoggerAverageVote performs best and shows improvements of 3.12% (average LF) and 6.08% (average ACC – Accuracy). Conclusion: The classifier based on ensemble techniques, such as bagging, average vote, and majority vote outperforms the baseline classifier. Overall, the ECLoggerAverageVote model performs best. The results show that the CloudStack project is more generalizable than the other projects.
Rocznik
Strony
7--38
Opis fizyczny
Bibliogr. 89 poz., tab., rys.
Twórcy
autor
  • Jaypee Institute of Information Technology, Noida, Uttar-Pradesh, India
autor
  • Jaypee Institute of Information Technology, Noida, Uttar-Pradesh, India
autor
  • ABB Corporate Research, Bangalore, India
Bibliografia
  • [1] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices in open-source software,” in Proceedings of the 34th International Conference on Software Engineering, 2012, pp. 102–112.
  • [2] B. Sharma, V. Chudnovsky, J.L. Hellerstein, R. Rifaat, and C.R. Das, “Modeling and synthesizing task placement constraints in google compute clusters,” in Proceedings of the 2Nd ACM Symposium on Cloud Computing. New York, NY, USA: ACM, 2011, pp. 3:1–3:14 http://doi.acm.org/10.1145/2038916.2038919
  • [3] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis of systems logs to diagnose performance problems,” in Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, 2012, pp. 26–26.
  • [4] Q. Fu, J.G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in distributed systems through unstructured log analysis,” in Proceedings of the 2009 Ninth IEEE International Conference on Data Mining. Washington, DC, USA: IEEE Computer Society, 2009, pp. 149–158. http://dx.doi.org/10.1109/ICDM.2009.60
  • [5] Z.M. Jiang, A.E. Hassan, G. Hamann, and P. Flora, “Automatic identification of load testing problems,” in IEEE International Conference on Software Maintenance, 2008, pp. 307–316.
  • [6] Z.M. Jiang, A.E. Hassan, G. Hamann, and P. Flora, “Automated performance analysis of load tests,” in IEEE International Conference on Software Maintenance, 2009, pp. 125–134.
  • [7] Blackberry enterprise server logs submission, [Online; accessed 4-June-2016]. BlackBerryEnterpriseServerLogsSubmission
  • [8] Q. Fu, J. Zhu, W. Hu, J.G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie, “Where do developers log? An empirical study on logging practices in industry,” in Companion Proceedings of the 36th International Conference on Software Engineering, 2014, pp. 24–33.
  • [9] S. Lal, N. Sardana, and A. Sureka, “LogOptPlus: Learning to optimize logging in catch and if programming constructs,” in 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Vol. 1, Jun. 2016, pp. 215–220.
  • [10] S. Lal and A. Sureka, “LogOpt: Static feature extraction from source code for automated catch block logging prediction,” in 9th India Soft- ware Engineering Conference (ISEC), 2016, pp. 151–155.
  • [11] J. Zhu, P. He, Q. Fu, H. Zhang, M. Lyu, and D. Zhang, “Learning to log: Helping developers make informed logging decisions,” in Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, Vol. 1, May 2015, pp. 415–425.
  • [12] Top tomcat performance problems part 2: Bad coding, inefficient logging and exceptions, [Online; accessed 31-May-2015]. . http://apmblog.dynatrace.com/2016/03/08/ top-tomcat-performance-problems-part-2-bad- coding-inefficient-logging-exceptions/
  • [13] W. Shang, M. Nagappan, and A.E. Hassan, “Studying the relationship between logging characteristics and the code quality of platform software,” Empirical Software Engineering, Vol. 20, No. 1, 2015, pp. 1–27. . http://dx.doi.org/10.1007/s10664-013-9274-8
  • [14] J. Nam, S.J. Pan, and S. Kim, “Transfer defect learning,” in 2013 35th International Conference on Software Engineering (ICSE), May 2013, pp. 382–391.
  • [15] M. Ayşe Tosun, B. Ayşe Başar, and T. Burak, “An industrial case study of classifier ensembles for locating soft- ware defects,” Software Quality Journal, Vol. 19, No. 3, 2011, pp. 515–536. http://dx.doi.org/10.1007/s11219-010-9128-1
  • [16] L. Mariani and F. Pastore, “Automated identification of failure causes in system logs,” in Software Reliability Engineering, 2008. ISSRE 2008. 19th International Symposium on, Nov. 2008, pp. 117–126.
  • [17] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “SherLog: error diagnosis by connecting clues from run-time logs,” in Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for Programming Languages and Operating Systems. New York, NY, USA: ACM, 2010, pp. 143–154.
  • [18] W. Xu, L. Huang, A. Fox, D. Patterson, and M.I. Jordan, “Detecting large-scale system problems by mining console logs,” in Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, 2009, pp. 117–132.
  • [19] M. Montanari, J.H. Huh, D. Dagit, R. Bobba, and R.H. Campbell, “Evidence of log integrity in policy-based security monitoring,” in DSN Workshops. IEEE, 2012, pp. 1–6.
  • [20] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy, “The unified logging infrastructure for data analytics at twitter,” Proc. VLDB Endow., Vol. 5, No. 12, Aug. 2012, pp. 1771–1780. . http://dx.doi.org/10.14778/2367502.2367516
  • [21] Logstash, Logstash homepage, [Online; accessed 27-July-2016]. https://www.elastic.co/ products/logstash/
  • [22] Splunk, Splunk homepage, [Online; accessed 27-July-2016]. . http://www.splunk. com/
  • [23] S. Kabinna, C.P. Bezemer, W. Shang, and A.E. Hassan, “Examining the stability of logging statements,” in The 23rd IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER), 2016.
  • [24] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software diagnosability via log enhancement,” in Proceedings of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems. New York, NY, USA: ACM, 2011, pp. 3–14.http://doi.acm.org/10.1145/1950365.1950369
  • [25] D. Yuan, S. Park, P. Huang, Y. Liu, M.M. Lee, X. Tang, Y. Zhou, and S. Savage, “Be conservative: Enhancing failure diagnosis with proactive logging,” in Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation, 2012, pp. 293–306. [Online]. http://dl.acm.org/citation.cfm?id=2387880.2387909
  • [26] 10 tips for proper application logging, [Online; accessed 19-Oct-2015]. http://www.javacodegeeks.com/2011/01/10-tips-proper-application-logging.html
  • [27] Why does the TRACE level exists, and when should I use it rather than DEBUG?, [Online; accessed 22-Oct-2015]. http://programmers.stackexchange.com/questions/279690/why-does-the-trace-level-exists-and- when-should-i-use-it-rather-than-debug
  • [28] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn defect predictors,” Software Engineering, IEEE Transactions on, Vol. 33, No. 1, Jan. 2007, pp. 2–13.
  • [29] S. Kim, E.J.W. Jr., and Y. Zhang, “Classifying software changes: Clean or buggy?” IEEE Trans- actions on Software Engineering, Vol. 34, No. 2, Mar. 2008, pp. 181–196.
  • [30] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An empirical study of classifier combination for cross-project defect prediction,” in Computer Software and Applications Conference (COMP- SAC), 2015 IEEE 39th Annual, Vol. 2, Jul. 2015, pp. 264–269.
  • [31] Y. Hu, X. Zhang, E. Ngai, R. Cai, and M. Liu, “Software project risk analysis using Bayesian networks with causality constraints,” Decision Support Systems, Vol. 56, 2013, pp. 439–449.
  • [32] X. Xia, D. Lo, X. Wang, X. Yang, S. Li, and J. Sun, “A comparative study of supervised learning algorithms for re-opened bug prediction,” in 17th European Conference on Software Maintenance and Reengineering (CSMR). IEEE, 2013, pp. 331–334.
  • [33] T.G. Dietterich, “Ensemble learning,” in The handbook of brain theory and neural networks, 2nd ed., M.A. Arbib, Ed. MIT Press: Cambridge, MA, 2002, pp. 405–408.
  • [34] Z.H. Zhou, “Ensemble learning,” Encyclopedia of Biometrics, 2015, pp. 411–416.
  • [35] L. Breiman, “Bagging predictors,” Machine Learning, Vol. 24, No. 2, 1996, pp.123–140. http://dx.doi.org/10.1023/A:1018054314350
  • [36] L. Breiman, “Random forests,” Mach. Learn., Vol. 45, No. 1, Oct. 2001, pp. 5–32. http://dx.doi.org/10.1023/A:1010933404324
  • [37] Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, Vol. 55, No. 1, Aug. 1997, pp. 119–139. http://dx.doi.org/10.1006/jcss.1997.1504
  • [38] J.R. Quinlan, “Bagging, boosting, and C4.S,” in Proceedings of the Thirteenth National Conference on Artificial Intelligence – Volume 1. AAAI Press, 1996, pp. 725–730. [Online]. http://dl.acm.org/citation.cfm?id=1892875.1892983
  • [39] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,2011.
  • [40] D.H. Wolpert, “Stacked generalization,” Neural networks, Vol. 5, No. 2, 1992, pp. 241–259.
  • [41] A. Panichella, R. Oliveto, and A.D. Lucia, “Cross-project defect prediction models: L’union fait la force,” in IEEE Conference on Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week, Feb. 2014, pp. 164–173.
  • [42] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, “ELBlocker: Predicting blocking bugs with ensemble imbalance learning,” Information and Software Technology, Vol. 61, 2015, pp. 93–106.. http://www.sciencedirect.com/science/article/pii/S0950584914002602
  • [43] W. Dai, Q. Yang, G.R. Xue, and Y. Yu, “Boosting for transfer learning,” in Proceedings of the 24th International Conference on Machine Learning. New York, NY, USA: ACM, 2007, pp. 193–200. http://doi.acm.org/10.1145/1273496.1273521
  • [44] S.J. Pan, I.W. Tsang, J.T. Kwok, and Q. Yang, “Domain adaptation via transfer component analysis,” IEEE Transactions on Neural Networks, Vol. 22, No. 2, Feb. 2011, pp. 199–210.
  • [45] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A.E. Hassan, “Cross-project build co-change prediction,” in 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER), March 2015, pp. 311–320.
  • [46] S.J. Pan, X. Ni, J.T. Sun, Q. Yang, and Z. Chen, “Cross-domain sentiment classification via spectral feature alignment,” in Proceedings of the 19th international conference on World wide web. ACM, 2010, pp. 751–760.
  • [47] Y. Freund and R.E. Schapire, “Experiments with a new boosting algorithm,” 1996. http://www.public.asu.edu/~jye02/CLASSES/Fall-2005/PAPERS/boosting-icml.pdf
  • [48] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten, “The WEKA data mining software: An up- date,” SIGKDD Explor. Newsl., Vol. 11, No. 1, Nov. 2009, pp. 10–18.http://doi.acm.org/10.1145/1656274.1656278
  • [49] M. Sewell, “Ensemble learning,” RN, Vol. 11, No. 02, 2008.
  • [50] Y. Freund and L. Mason, “The alternating decision tree learning algorithm,” in icml, Vol. 99,1999, pp. 124–133.
  • [51] K. Murphy, A brief introduction to graphical models and bayesian networks, [Online; accessed 20-March-2016]. http://www.cs.ubc. ca/~murphyk/Bayes/bnintro.html
  • [52] T.D. Nielsen and F.V. Jensen, Bayesian net- works and decision graphs. Springer Science & Business Media, 2009.
  • [53] R. Kohavi, “The power of decision tables,” in Machine Learning: ECML-95. Springer, 1995, pp. 174–189.
  • [54] G.H. John, R. Kohavi, K. Pfleger et al., “Irrelevant features and the subset selection problem,” in Machine learning: proceedings of the eleventh international conference, 1994, pp. 121–129.
  • [55] A. Padhye, Classification methods, [On- line; accessed 20-March-2016]. [Online]. http://www.d.umn.edu/~padhy005/Chapter5.html
  • [56] D.W. Hosmer and S. Lemeshow, “Introduction to the logistic regression model,” Applied Logistic Regression, Second Edition, 2000, pp. 1–30.
  • [57] D.D. Lewis, “Naive (Bayes) at forty: The independence assumption in information retrieval,” in Proceedings of the 10th European Conference on Machine Learning. London, UK, UK: Springer-Verlag, 1998, pp. 4–15. http://dl.acm.org/citation.cfm?id=645326.649711
  • [58] S. Shivaji, E.J. Whitehead, R. Akella, and S. Kim, “Reducing features to improve code change-based bug prediction,” IEEE Transactions on Software Engineering, Vol. 39, No. 4,2013, pp. 552–569.
  • [59] M.D. Buhmann and M.D. Buhmann, Radial Ba- sis Functions. New York, NY, USA: Cambridge University Press, 2003.
  • [60] Python NLTK library, [Online; accessed 19-March-2016]. http://www.nltk.org/
  • [61] Java regains spot as most popular language in developer index, [Online; accessed 19-March-2016]. http://www.infoworld.com/article/2909894/application-development/java-back- at-1-in-language-popularity-assessment.html
  • [62] Apache, Apache project homepage, [On- line; accessed 18-March-2016]. [On-line]. https://commons.apache.org/proper/commons-logging/
  • [63] Cloudstack, Cloudstack project homepage, [Online; accessed 18-March-2016]. [Online]. https://cloudstack.apache.org/
  • [64] Hadoop, Hadoopt project homepage, [On- line; accessed 18-March-2016]. [Online]. http://hadoop.apache.org/
  • [65] B. Chen and Z.M. (Jack) Jiang, “Characterizing logging practices in Java-based open source software projects – a replication study in Apache Software Foundation,” Empirical Software Engineering, 2016, pp. 1–45. [Online]. http://dx.doi.org/10.1007/s10664-016-9429-5
  • [66] D. Correa and A. Sureka, “Chaff from the wheat: Characterization and modeling of deleted questions on stack overflow,” in Proceedings of the 23rd International Conference on World Wide Web. New York, NY, USA: ACM, 2014, pp. 631–642. [Online]. http://doi.acm.org/10.1145/2566486.2568036
  • [67] S. Shivaji, E.J.W. Jr., R. Akella, and S. Kim, “Reducing features to improve bug prediction,” in Proceedings of the 2009 IEEE/ACM Inter- national Conference on Automated Software Engineering. Washington, DC, USA: IEEE Computer Society, 2009, pp. 600–604. [Online]. http://dx.doi.org/10.1109/ASE.2009.76
  • [68] C.D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press, 2008.
  • [69] Y. Tian, J. Lawall, and D. Lo, “Identifying Linux bug fixing patches,” in Proceedings of the 34th International Conference on Software Engineering. Piscataway, NJ, USA: IEEE Press, 2012, pp. 386–396. [Online]. http://dl.acm.org/citation.cfm?id=2337223.2337269
  • [70] H. Valdivia Garcia and E. Shihab, “Characterizing and predicting blocking bugs in open source projects,” in Proceedings of the 11th Working Conference on Mining Software Repositories. New York, NY, USA: ACM, 2014, pp. 72–81. [Online]. http://doi.acm.org/10.1145/2597073.2597099
  • [71] F. Zhang, Q. Zheng, Y. Zou, and A.E. Hassan, “Cross-project defect prediction using a connectivity-based unsupervised classifier,” in Proceedings of the 38th International Conference on Software Engineering. New York, NY, USA: ACM, 2016, pp. 309–320. [Online]. http://doi.acm.org/10.1145/2884781.2884839
  • [72] G. Zhou, D. Shen, J. Zhang, J. Su, and S. Tan, “Recognition of protein/gene names from text using an ensemble of classifiers,” BMC bioinformatics, Vol. 6, No. 1, 2005, p. 1.
  • [73] R.F. Satin, I.S. Wiese, and R. Ré, “An exploratory study about the cross-project defect prediction: Impact of using different classification algorithms and a measure of performance in building predictive models,” in Computing Conference (CLEI), 2015 Latin American. IEEE, 2015, pp. 1–12.
  • [74] A. Jordan, “On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes,” Advances in neural information processing systems, Vol. 14, 2002, p. 841.
  • [75] StatSoft, Neural networks, [On- line; accessed 30-July-2016]. [On- line]. http://www.fmi.uni-sofia.bg/fmi/statist/ education/textbook/eng/stneunet.html#radial
  • [76] T.G. Dietterich, “Ensemble methods in machine learning,” in Proceedings of the First International Workshop on Multiple Classifier Systems. London, UK, UK: Springer-Verlag, 2000, pp. 1–15. [Online]. http: //dl.acm.org/citation.cfm?id=648054.743935
  • [77] S.B. Kotsiantis, “Supervised machine learning: A review of classification techniques,” in Proceedings of the 2007 Conference on Emerging Artificial Intel ligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies. Ams- terdam, The Netherlands, The Netherlands: IOS Press, 2007, pp. 3–24. [Online]. http://dl.acm.org/citation.cfm?id=1566770.1566773
  • [78] Z.H. Zhou, Ensemble methods: foundations and algorithms. CRC press, 2012.
  • [79] R.T. Guy, P. Santago, and C.D. Langefeld, “Bootstrap aggregating of alternating decision trees to detect sets of SNPs that associate with disease,” Genetic epidemiology, Vol. 36, No. 2, 2012, pp. 99–106.
  • [80] E. Bauer and R. Kohavi, “An empirical com- parison of voting classification algorithms: Bagging, boosting, and variants,” Machine learning, Vol. 36, No. 1-2, 1999, pp. 105–139.
  • [81] G. Brown and L.I. Kuncheva, “Good and bad diversity in majority vote ensembles,” in International Workshop on Multiple Classifier Systems. Springer, 2010, pp. 124–133.
  • [82] P.R. Campos, V.M. de Oliveira, and F.B. Moreira, “Small-world effects in the majority-vote model,” Physical Review E, Vol. 67, No. 2, 2003, p. 026104.
  • [83] L.I. Kuncheva, C.J. Whitaker, C.A. Shipp, and R.P. Duin, “Limits on the majority vote accuracy in classifier fusion,” Pattern Analysis & Applications, Vol. 6, No. 1, 2003, pp. 22–31.
  • [84] Sheng, Cloudstack and hadoop: A match made in the cloud, [Online; accessed 27-July-2016]. [Online]. http://nosql.mypopescu.com/post/20461845393/cloudstack-and-hadoop-a-match- made-in-the-cloud#fn:2-fn-Sheng/
  • [85] CloudStack, Additional installation options, [Online; accessed 27-July-2016]. [Online]. http://docs.cloudstack.apache.org/projects/ cloudstack-installation/en/4.6/optional_ installation.html/
  • [86] M. Mitchell, An introduction to genetic algo- rithms. MIT press, 1998.
  • [87] C. Zhai and S. Massung, Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining. Association for Computing Machinery and Morgan & Clay- pool Publishers, 2016. [Online]. https://books. google.co.in/books?id=0zq0DAAAQBAJ
  • [88] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson, “Automated bug assignment: Ensemble-based machine learning in large scale industrial contexts,” Empirical Software Engineering, 2015, pp. 1–46.
  • [89] M. Borg, “TuneR: a framework for tuning soft- ware engineering tools with hands-on instructions in R,” Journal of Software: Evolution and Process, Vol. 28, No. 6, 2016, pp. 427–459.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7e19954-b58f-47e7-bcc5-1cfe94fb8482
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.