Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Widespread proliferation of interconnected healthcare equipment, accompanying software, operating systems, and networks in the Internet of Medical Things (IoMT) raises the risk of security compromise as the bulk of IoMT devices are not built to withstand internet attacks. In this work, we have developed a cyber-attack and anomaly detection model based on recursive feature elimination (RFE) and multilayer perceptron (MLP). The RFE approach selected optimal features using logistic regression (LR) and extreme gradient boosting regression (XGBRegressor) kernel functions. MLP parameters were adjusted by using a hyperparameter optimization and 10-fold cross-validation approach was performed for performance evaluations. The developed model was performed on various IoMT cybersecurity datasets, and attained the best accuracy rates of 99.99%, 99.94%, 98.12%, and 96.2%, using Edith Cowan University- Internet of Health Things (ECU-IoHT), Intensive Care Unit (ICU Dataset), Telemetry data, Operating systems’ data, and Network data from the testbed IoT/IIoT network (TON-IoT), and Washington University in St. Louis enhanced healthcare monitoring system (WUSTL-EHMS) datasets, respectively. The proposed method has the ability to counter cyber attacks in healthcare applications.
Wydawca
Czasopismo
Rocznik
Tom
Strony
30--41
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Department of Electrical-Electronics Engineering, Technology Faculty, Firat University, Elazig, Turkey
autor
- Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
autor
- Department of Electrical-Electronics Engineering, Technology Faculty, Firat University, Elazig, Turkey
autor
- M.B, B.S, ti, Singapore and Duke-NUS Medical School, Singapore
autor
- Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, Singapore
- Biomedical Engineering, School of Science and Technology, SUSS University, Singapore
- Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
Bibliografia
- [1] Abdullahi M, Baashar Y, Alhussian H, Alwadain A, Aziz N, Capretz LF, et al. Detecting Cybersecurity Attacks in Internet of Things Using Artificial Intelligence Methods: A Systematic Literature Review. Electron 2022;11(2):198.
- [2] Fotouhi H, Čaušević A, Lundqvist K, Björkman M. Communication and Security in Health Monitoring Systems - A Review. Proc - Int Comput Softw Appl Conf 2016. https:// doi.org/10.1109/COMPSAC.2016.8.
- [3] Singh L, Kanstrup M, Depa K, Falk A-C, Lindström V, Dahl O, et al. Digitalizing a brief intervention to reduce intrusive memories of psychological trauma for health care staff working during COVID-19: Exploratory pilot study with nurses. JMIR Form Res 2021;5(5):e27473.
- [4] Azeez NA, der Vyver C Van. Security and privacy issues in ehealth cloud-based system: A comprehensive content analysis. Egypt Informatics J 2019. https://doi.org/10.1016/j. Eij.2018.12.001.
- [5] Dhiman G, Juneja S, Mohafez H, El-Bayoumy I, Sharma LK, Hadizadeh M, et al. Federated Learning Approach to Protect Healthcare Data over Big Data Scenario. Sustain 2022;14 (5):2500.
- [6] Amalraj JR, Lourdusamy R. Security and privacy issues in federated healthcare - An overview. Open Comput Sci 2022. https://doi.org/10.1515/comp-2022-0230.
- [7] Ali M, Naeem F, Tariq M, Member S. Federated Learning for Privacy Preservation in Smart Healthcare Systems: A Comprehensive Survey. (arXiv:2203.09702v1 [eess.SY]). ArXiv Comput Sci n.d.
- [8] Sivan R, Zukarnain ZA. Security and privacy in cloud-based ehealth system. Symmetry (Basel) 2021;13(5):742.
- [9] He Y, Aliyu A, Evans M, Luo C. Health care cybersecurity challenges and solutions under the climate of COVID-19: Scoping review. J Med Internet Res 2021;23(4):e21747.
- [10] Wilner AS, Luce H, Ouellet E, Williams O, Costa N. From public health to cyber hygiene: Cybersecurity and Canada’s healthcare sector. Int J 2021;76(4):522-43.
- [11] Georgiadou A, Michalitsi-Psarrou A, Gioulekas F, Stamatiadis E, Tzikas A, Gounaris K, et al. Hospitals’ cybersecurity culture during the COVID-19 crisis. Healthc 2021;9(10):1335.
- [12] Buczak AL, Guven E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Commun Surv Tutorials 2016;18(2):1153-76.
- [13] Clifton L, Clifton DA, Pimentel MAF, Watkinson PJ, Tarassenko L. Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensors. IEEE J Biomed Heal Informatics 2014;18(3):722-30.
- [14] Rani AAV, Baburaj E. Secure and intelligent architecture for cloud-based healthcare applications in wireless body sensor networks. Int J Biomed. Eng Technol 2019;29(2):186.
- [15] Alabdulatif A, Khalil I, Forkan ARM, Atiquzzaman M. RealTime Secure Health Surveillance for Smarter Health Communities. IEEE Commun Mag 2019;57:122-9. https://doi. org/10.1109/MCOM.2017.1700547.
- [16] Chakraborty S, Aich S, Kim HC. A Secure Healthcare System Design Framework using Blockchain Technology. Int. Conf. Adv. Commun. Technol. ICACT, 2019. https://doi.org/ 10.23919/ICACT.2019.8701983.
- [17] Mathews A. What can machine learning do for information security? Netw Secur 2019;2019(4):15-7.
- [18] Hady AA, Ghubaish A, Salman T, Unal D, Jain R. Intrusion Detection System for Healthcare Systems Using Medical and Network Data: A Comparison Study. IEEE Access 2020;8:106576-84.
- [19] Tao H, Bhuiyan MZA, Abdalla AN, Hassan MM, Zain JM, Hayajneh T. Secured Data Collection with Hardware-Based Ciphers for IoT-Based Healthcare. IEEE Internet Things J 2019;6(1):410-20.
- [20] Ahmed M, Byreddy S, Nutakki A, Sikos LF, Haskell-Dowland P. ECU-IoHT: A dataset for analyzing cyberattacks in Internet of Health Things. Ad Hoc Netw 2021;122:102621.
- [21] Akshay Kumaar M, Samiayya D, Vincent PMDR, Srinivasan K, Chang CY, Ganesh H. A Hybrid Framework for Intrusion Detection in Healthcare Systems Using Deep Learning. Front Public Heal 2022. https://doi.org/10.3389/fpubh.2021.824898.
- [22] Lee JD, Cha HS, Rathore S, Park JH. M-IDM: A multi-classification based intrusion detection model in healthcare iot. Comput Mater Contin 2021;67:1537-53. https://doi.org/ 10.32604/cmc.2021.014774.
- [23] Akram F, Liu D, Zhao P, Kryvinska N, Abbas S, Rizwan M. Trustworthy Intrusion Detection in E-Healthcare Systems. Front Public Heal 2021. https://doi.org/10.3389/fpubh.2021.788347.
- [24] Thamilarasu G, Odesile A, Hoang A. An intrusion detection system for internet of medical things. IEEE Access 2020;8:181560-76.
- [25] Chenthara S, Ahmed K, Wang H, Whittaker F. Security and Privacy-Preserving Challenges of e-Health Solutions in Cloud Computing. IEEE Access 2019;7:74361-82.
- [26] Beginner’s Guide to Feature Selection in Python n.d. https:// www.datacamp.com/community/tutorials/feature-selectionpython (accessed February 4, 2022).
- [27] Granitto PM, Furlanello C, Biasioli F, Gasperi F. Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom Intell Lab Syst 2006;83 (2):83-90.
- [28] Jaya Hidayat TH, Ruldeviyani Y, Aditama AR, Madya GR, Nugraha AW, Adisaputra MW. Sentiment analysis of twitter data related to Rinca Island development using Doc2Vec and SVM and logistic regression as classifier. Procedia Comput Sci 2022;197:660-7. https://doi.org/10.1016/j.procs.2021.12.187.
- [29] Dhaliwal SS, Al NA, Abbas R. Effective intrusion detection system using XGBoost. Inf 2018:9. https://doi.org/10.3390/ info9070149.
- [30] Zhang D, Qian L, Mao B, Huang C, Huang B, Si Y. A DataDriven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost. IEEE Access 2018;6:21020-31.
- [31] Jin X, Guo J, Shen Yi, Liu X, Zhao C. Application of singular spectrum analysis and multilayer perceptron in the midlong-term polar motion prediction. Adv Sp Res 2021;68 (9):3562-73.
- [32] Govindarajan M, Chandrasekaran RM. Intrusion detection using neural based hybrid classification methods. Comput Networks 2011;55(8):1662-71.
- [33] Hussain F, Abbas SG, Shah GA, Pires IM, Fayyaz UU, Shahzad F, et al. A framework for malicious traffic detection in iot healthcare environment. Sensors 2021;21(9):3025.
- [34] Alsaedi A, Moustafa N, Tari Z, Mahmood A, Anwar AN. TONIoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE. Access 2020;8:165130-50. https://doi.org/10.1109/ ACCESS.2020.3022862.
- [35] Khan IA, Moustafa N, Razzak I, Tanveer M, Pi D, Pan Y, et al. XSRU-IoMT: Explainable simple recurrent units for threat detection in Internet of Medical Things networks. Futur Gener Comput Syst 2022;127:181-93.
- [36] Kilincer IF, Ertam F, Sengur A. A comprehensive intrusion detection framework using boosting algorithms. Comput Electr Eng 2022;100. https://doi.org/10.1016/ j.compeleceng.2022.107869 107869.
- [37] Nandy S, Adhikari M, Khan MA, Menon VG, Verma S. An Intrusion Detection Mechanism for Secured IoMT framework based on Swarm-Neural Network. IEEE J Biomed Heal Informatics 2022;26(5):1969-76.
- [38] Kumar P, Gupta GP, Tripathi R. An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks. Comput Commun 2021;166:110-24.
- [39] Zachos G, Essop I, Mantas G, Porfyrakis K, Ribeiro JC, Rodriguez J. An anomaly-based intrusion detection system for internet of medical things networks. Electron 2021;10 (21):2562.
- [40] Ghazanfar S, Hussain F, Rehman AU, Fayyaz UU, Shahzad F, Shah GA. IoT-Flock: An Open-source Framework for IoT Traffic Generation. 2020 Int. Conf. Emerg. Trends Smart Technol. ICETST 2020, 2020. https://doi.org/10.1109/ ICETST49965.2020.9080732.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7e07c7b-3451-4f3e-99ae-ca97d1904bbd