PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of treated wastewater effluent on contamination of a water supply aquifer during one decade of water exploitation (Tursko well field, Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recharge zone of an aquifer supplying the Tursko well-field (Poland), located in an area of sparse water resources, shows groundwater contamination manifested by high nitrate concentrations and pharmaceutical compounds. This study documents the steady deterioration of groundwater chemistry during one decade of groundwater exploitation, and analyses wastewater impact on the groundwater chemistry using pharmaceutical compounds as anthropogenic tracers, with focus on the influence of treated wastewater and drainage water. These waters infiltrate into groundwater from a drainage ditch located in the water supply aquifer’s recharge zone. It is shown that strongly contaminated water can deliver organic matter and nutrients to the groundwater, activating or intensiying denitrification. As a result, the nitrate concentration has decreased in the groundwater, while concentrations of denitrification products have increased. Associated process of oxidation of organic matter causes periodic exceeding of limits allowed for drinking water. The ability of pharmaceutical compounds to act as anthropogenic tracers shows that infiltration of wastewater is a significant factor influencing drinking groundwater quality.
Rocznik
Strony
art. no. 14
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Adam Mickiewicz University in Poznań, Institute of Geology, Department of Hydrogeology and Water Protection, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Institute of Geology, Department of Hydrogeology and Water Protection, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Institute of Geology, Department of Hydrogeology and Water Protection, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
  • Institute of Plant Protection-National Research Institute, Department of Pesticide Residue Research, Władysława Węgorka 20, 60-318 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Institute of Geology, Department of Hydrogeology and Water Protection, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Institute of Geology, Department of Hydrogeology and Water Protection, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
Bibliografia
  • 1. Asano, T., Cotruvo, J., 2004. Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations. Water Research, 38: 1941-1951.
  • 2. Bennekom, C.A., Kruithof, J.C., Krajenbrink, G.J.W., Koo, H.J., 1993. Effect of nutrient leaching on groundwater and drinking water. Water SRT Aqua, 42: 77-87.
  • 3. DeSimone, L., Howes, B., 1998. Nitrogen transport and transformations in a shallow aquifer receiving wastewater discharge: a mass balance approach. Water Resources Research, 34: 271-285.
  • 4. Dragon, K., 2012. The changes of groundwater chemistry of semi-confined buried valley aquifer during one decade of water exploitation. Environmental Earth Sciences, 65: 1283-1290.
  • 5. Dragon, K., Kasztelan, D., Gorski, J., Najman, J., 2016. Influence of subsurface drainage systems on nitrate pollution of water supply aquifer (Tursko well-field, Poland). Environmental Earth Sciences, 75.
  • 6. Dragon, K., Górski, J., Kruć, R., Drożdżynski, D., Grischek, T., 2018. Removal of natural organic matter and organic micropollutants during riverbank filtration in Krajkowo, Poland. Water, 10.
  • 7. Dragon, K., Drozdzynski, D., Gorski, J., Kruc, R., 2019. The migration of pesticide residues in groundwater at a bank filtration site (Krajkowo well field, Poland). Environmental Earth Sciences, 78.
  • 8. Drożdżynski, D., 2020. Pozostałości środków ochrony roślin w wodach powierzchniowych na terenach intensywnie użytkowanych rolniczo (in Polish). Scientific dissertations of Institute of Plant Protection - National Research Institute, 33.
  • 9. El Heloui, M., Mimouni, R., Hamadi, F., 2016. Impact of treated wastewater on groundwater quality in the region of Tiznit (Morocco). Journal of Water Reuse and Desalination, 6: 454-463.
  • 10. Feast, N.A., Hiscock, K.M., Dennis, P.F., Andrews, J.N., 1998. Nitrogen isotope hydrochemistry and denitrification within the Chalk aquifer system of north Norfolk, UK. Journal of Hydrology 211: 233-252.
  • 11. Fisher, I., Fisher, I.J., Phillips, P.J., Colella, K.M., Fisher, S.C., Tagliaferri, T., Foreman, W.T., Furlong, E.T., 2016. The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey. Marine Pollution Bulletin, 107: 509-517.
  • 12. Foster, S., Chilton, P., 2004. Downstream of downtown: urban wastewater as groundwater recharge. Hydrogeology Journal, 12: 115-120.
  • 13. Górski, J., Siepak, M., 2014. Assessment of metal concentrations in tap-water - from source to the tap: a case study from Szczecin, Poland. Geologos, 20: 25-33.
  • 14. Jampani, M., Liedl, R., Hulsmann, S., Sonkamble, S., Amerasinghe, P., 2020. Hydrogeochemical and mixing processes controlling groundwater chemistry in a wastewater irrigated agricultural system of India. Chemosphere, 239.
  • 15. Kibuye, F.A., Gall, H.E., Elkin, K.R., Ayers, B., Veith, T.L., Miller, M., Janob, S., Hayden, K.R., Watson, J.E., Elliott, H.A., 2019. Fate of pharmaceuticals in a spray-irrigation system: from wastewater to groundwater. Science of the Total Environment, 654: 197-208.
  • 16. Kondor, A.C., Jakab, G., Vancsik, A., Filep, T., Szeberenyi, J., Szabo, L., Maasz, G., Ferinsz, A., Dobosy, P., Szalai, Z., 2020. Occurrence of pharmaceuticals in the Danube and drinking water wells: efficiency of riverbank filtration. Environmental Pollution,265: 114893.
  • 17. Kruć, R., Dragon, K., Górski, J., 2019. Migration of pharmaceuticals from the Warta River to the aquifer at a riverbank filtration site in Krajkowo (Poland). Water, 11.
  • 18. Maeng, S.K., Ameda, E., Sharma, S.K., Grutzmacher, G., Amy, G.L., 2010. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge. Water Research, 44: 4003-4014.
  • 18. Massmann, G., Nogeitzig, A., Taute, T., Pekdeger, A., 2008. Seasonal and spatial distribution of redox zones during lake bank filtration in Berlin, Germany. Environmental Geology, 54: 53-65.
  • 20. Muller, B., Scheytt, T., Asbrand, M., de Casas, A., 2012. Pharmaceuticals as indictors of sewage-influenced groundwater. Hydrogeology Journal, 20: 1117-1129.
  • 21. Obeidat, M., Awawdeh, M., Al-Mughaid, H., 2013. Impact of a domestic wastewater treatment plant on groundwater pollution, north Jordan. Revista Mexicana de Ciencias Geologicas, 30: 371-384.
  • 22. Petrie, B., Barden, R., Kasprzyk-Hordern, B., 2015. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72: 3-27.
  • 23. Porowski, A., Porowska, D., Halas, S., 2019. Identification of sulfate sources and biogeochemical processes in an aquifer affected by peatland: insights from monitoring the isotopic composition of groundwater sulfate in Kampinos National Park, Poland. Water, 11: 1388.
  • 24. Rivett, M., Buss, S., Morgan, P., Smith, J., Bemment, C., 2008. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Research, 42: 4215-4232.
  • 25. Rozporządzenie Ministra Zdrowia z dnia 07 grudnia 2017 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi (Dz.U. 2017 nr 2294) (in Polish).
  • 26. Siepak, M., Sojka, M., 2017. Application of multivariate statistical approach to identify trace elements sources in surface waters: a case study of Kowalskie and Stare Miasto reservoirs, Poland. Environmental Monitoring and Assessment, 189.
  • 27. Strenn, B., Clara, M., Gans, O., Kreuzinger, N., 2004. Carbamazepine, diclofenac, ibuprofen and bezafibrate - investigations on the behaviour of selected pharmaceuticals during wastewater treatment. Water Science and Technology, 50: 269-276.
  • 28. Su, D., Ben, W., Strobel, B., Qiang, Z., 2020. Occurrence, source estimation and risk assessment of pharmaceuticals in the Chaobai River characterized by adjacent land use. Science of the Total Environment, 712.
  • 29. Tran, N., Hu, J., Li, J., Ong, S., 2014. Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater. Water Research, 48: 443-456.
  • 30. Van Stempvoort, D., Van Stempvoort, D.R., Roy, J.W., Grabuski, J., Brown, S.J., Bickerton, G., Sverko, E., 2013. An artificial sweetener and pharmaceutical compounds as co-tracers of urban wastewater in groundwater. Science of the Total Environment, 461: 348-359.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7d8f350-1912-434f-90f8-03c246b989a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.