PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of selected properties of rhenium sulphide dispersion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to potential application of rhenium sulphide in medicine and industry, this study is focused on the properties of synthetic and commercial rhenium sulphide. The main reaction of rhenium sulphide preparation involves potassium perrhenate and sodium thiosulphate in the acidic environment giving a mixture of rhenium sulphide and sulphur. The next step is removing sulphur by its dissolution in ether. Stabilization by Povidone K-25 is needed to obtain rhenium sulphide dispersed with the grain size of 0.5–4 m. The extrapolated value of pHiep for synthesised rhenium sulphide is 2.3 whereas for commercial samples this value is lower than 2. For synthetic sample a dependence of zeta potential on the carrier electrolyte concentration is found. It is larger than that for the commercial sample, probably due to surface oxidation during synthesis or purification.
Rocznik
Strony
387--397
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
autor
  • Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
autor
  • Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
autor
  • Maria Curie Sklodowska University, Pl. M. Curie Sklodowskiej 3, 20-031 Lublin, Poland
Bibliografia
  • 1. COLEMAN K.S., SLOAN J., HANSON N.A., BROWN G., CLANCY G.P., TERRONES M., TERRONES H., GREEN M.L.H., 2002, The Formation of ReS2 Inorganic Fullerene-like Structures Containing Re4 Parallelogram Units and Metal-Metal Bonds, J. Am. Chem. Soc., 124, 11580-11581.
  • 2. DE LOS REYES J. A., 2007, Ruthenium sulphide supported on alumina as hydrotreating catalyst, Appl. Catal. A. 322, 106–112.
  • 3. ESCALONA N., VRINAT M., LAURENTI D., GIL F.J., 2007 Llambı´as, Rhenium sulphide in hydrotreating, Appl. Catal. A. 322, 113–120.
  • 4. FULLSTON D., FORNASIERO D., RALSTON J., 1999, Zeta potential study of the oxidation of copper sulphide minerals: Colloids and Surfaces A: Physicochem. Eng. Aspects 146, 113–121.
  • 5. GÄRD R., SUN Z., FORSLING W., 1995, FT-IR and FT-Raman Studies of Colloidal ZnS: 1. Acidic and Alkaline Sites at the ZnS/Water Interface, J. Colloid Interface Sci., 169, 393–399.
  • 6. HERLINGER’ A.W., LONG T.V., 1969, An Investigation of the Structure of the Disulfite Ion in Aqueous Solution Using Raman and Infrared Spectroscopies, Inorg. Chem., 8, 2661−2665.
  • 7. HIBBLE S. J., WALTON R.I., 1996, X-Ray absorption studies of amorphous Re2S7. Chem. Commun., 169, 393–399.
  • 8. JUNFENG, Y. DUANZHI, M. XIAOFENG, G. ZILI, Z. JIONG, W. YONGXIAN, F.F. KNAPP JR., 1999, [188Re] Rhenium Sulphide Suspension: A Potential Radiopharmaceutical for Tumor Treatment Following Intra-Tumor Injection, Nucl. Med. Biol., 26, 573–579.
  • 9. KLETT R., LANGE U., HAAS H., VOTH M., PINKERT J., 2007, Radiosynoviorthesis of medium-sized joints with rhenium-186-sulphide colloid: a review of the literature, Rheumatology; 46(10), 1531–1537.
  • 10. LUO J., ALEXANDER B., WAGNER T.R., MAGGARD P.A., 2004, Synthesis and Characterization of ReO4-Containing Microporous and Open Framework Structures, Inorg. Chem., 43, 5537–5542.
  • 11. LUXTON T.P., EICK M.J., SCHECKEL K.G., 2011, Characterization and dissolution properties of ruthenium oxides, J. Colloid Interface Sci., 359, 30–39.
  • 12. MURRAY H.H., KELTY S.P., CHIANELLI R.R., 1994, Structure of Rhenium Disulphide, Inorg. Chem., 33, 4418–4420.
  • 13. PEAK D., FORD R.G., SPARKS D.L., 1999, An in Situ ATR-FTIR Investigation of Sulfate Bonding Mechanisms on Goethite, J. Colloid Interface Sci. 218, 289–299.
  • 14. RÖNNGREN L., SJÖBERG S., SUN Z., FORSLING W., SCHINDLER P.W., 1991, Surface reactions in aqueous metal sulphide systems: 2. Ion exchange and acid/base reactions at the ZnS single bond H2O interface. J. Colloid Interface Sci., 145, 396–404.
  • 15. SCHWARZ D.E., FRENKEL A.I., NUZZO R.G., RAUCHFUSS T.B., VAIRAVAMURTHY A., 2004, Electrosynthesis of ReS4. XAS Analysis of ReS2, Re2S7, and ReS4. Chem. Mater., 16, 151–158.
  • 16. STARTSEV A.N., RODIN V.N., ZAIKOVSKII V.I., KALINKIN A.V., KRIVENTSOV V.V., KOCHUBEI D.I., 1996, Silica-supported Sulphide Catalysts: IX. Synthesis and Properties of Structural Analogs of the Active Component of Hydrodesulphurization Catalysts. Kinet. Catal., 38 (4) 548–555.
  • 17. STELZER J.B., NITZSCHE R., CARO J., 2005, Zeta Potential Measurement in Catalyst Preparations. Chem. Eng. Technol., 28, 182–186.
  • 18. TOWNSEND T.M., ALLANIC A., NOONAN C., SODEAU J.R., 2012, Characterization of Sulphurous Acid, Sulfite, and Bisulfite Aerosol Systems, J. Phys. Chem. A., 116, 4035–4046.
  • 19. TU W., DENIZOT B., 2007, Synthesis of small-sized rhenium sulphide colloidal nanoparticles, J. Colloid Interface Sci., 310, 167–170.
  • 20. ZHANG Q., XU Z., FINCH J.A., 1995, Surface Ionization and Complexation at the Sphalerite/Water Interface: I. Computation of Electrical Double-Layer Properties of Sphalerite in a Simple Electrolyte, J. Colloid Interface Sci., 169, 468–475.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7d591a2-116e-4188-b330-e6d901cdb41b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.