Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ dodatkowych materiałów cementowych na odporność zapraw na siarczany
Konferencja
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning - WMCCAU 2024 : 2-6.09.2024
Języki publikacji
Abstrakty
Sulfate reaction is a damaging expansive process that deteriorates cement-based structures over time. Various methods have been proposed to mitigate the effects of sulfate attack in concrete. Using Type II or Type V portland cement is an appealing approach to control sulfate attack. Additionally, incorporating supplementary cementitious materials (SCMs) such as class F fly ash, a by-product of coal combustion for electricity generation, has proven effective at mitigating sulfate attack damage. However, future availability of fly ash is uncertain due to the energy industry transitioning towards more sustainable methods of energy production rather than relying on coal combustion. Consequently, there is an incentive to seek alternative SCMs that can effectively mitigate sulfate attack while being environmentally sustainable and economically feasible. In this study, ASTM C1012, a globally recognized standard test method for sulfate evaluation, was employed to assess sulfate resistance of mortar specimens. In total, 14 mortar mixtures containing various types and concentrations of alternative SCMs, including silica fume, metakaolin, and pumicite along with two types of portland cement (Type I and Type I/II) were produced. The results indicated that Type I/II portland cement had greater sulfate resistance compared to Type I cement in mortar mixtures, regardless of the type and concentration of SCMsused. Additionally, although metakaolin considerably improved sulfate resistance, silica fume and pumicite used in this studyhad only limited impact on sulfate resistance of the specimens. When evaluating ternary mixtures, using a combination of 22.5% metakaolin and 7.5% fly ash to replace 30% of Type I portland cement resulted in the greatest sulfate resistance among all mortar mixtures, with 0.054% expansion after nine months of testing. It is worth mentioning that when using Type I/II portland cement and only 15% metakaolin (as a cement replacement), sulfate resistance was comparable to the ternary mixture with 22.5% metakaolin, 7.5% fly ash, and with Type I portland cement. Overall, the results showed that metakaolin, fly ash, and pumicitecan be considered effective SCMs for improving sulfate resistance.
Czasopismo
Rocznik
Tom
Strony
art. no. 09
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
autor
- Sandia National Laboratories, Albuquerque, NM 87123, USA
autor
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
autor
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
Bibliografia
- 1. H. Lee, R. D. Cody, A. M. Cody, and P. G. Spry, “The formation and role of ettringite in Iowa highway concrete deterioration,” Cement and Concrete Research 35(2), 332–343 (2005).
- 2. B. Ma, X. Gao, E. A. Byars, and Q. Zhou, “Thaumasite formation in a tunnel of Bapanxia Dam in Western China,” Cement and Concrete Research 36(4), 716–722 (2006).
- 3. M. Rahman and M. Bassuoni, “Thaumasite sulfate attack on concrete: Mechanisms, influential factors and mitigation,” Construction and Building Materials 73, 652–662 (2014).
- 4. S. Sahu and N. Thaulow, “Delayed ettringite formation in Swedish concrete railroad ties,” Cement and Concrete Research 34(9), 1675–1681 (2004).
- 5. R. Ragoug, O. O. Metalssi, F. Barberon, J. M. Torrenti, N. Roussel, L. Divet, and J. B. d’Espinose de Lacaillerie, “Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects,” Cement and Concrete Research 116, 134–145 (2019).
- 6. K. Wang, J. Guo, L. Yang, P. Zhang, and H. Xu, “Multiphysical damage characteristics of concrete exposed to external sulfate attack: Elucidating effect of drying–wetting cycles,” Construction and Building Materials 329, 127143 (2022,).
- 7. Y. Zhang, Y. Hua, and X. Zhu, “Investigation of the durability of eco-friendly concrete material incorporating artificial lightweight fine aggregate and pozzolanic minerals under dual sulfate attack,” Journal of Cleaner Production 331, 130022 (2022).
- 8. C. Li, J. Li, Q. Ren, Y. Zhao, and Z. Jiang, “Degradation mechanism of blended cement pastes in sulfate-bearing environments under applied electric fields: Sulfate attack vs. decalcification,” Composites Part B: Engineering 246, 110255 (2022).
- 9. Y. Yin, S. Hu, J. Lian, and R. Liu, “Fracture properties of concrete exposed to different sulfate solutions under dryingwetting cycles,” Engineering Fracture Mechanics 266, 108406 (2022).
- 10. M. L. Nehdi, A. R. Suleiman, and A. M. Soliman, “Investigation of concrete exposed to dual sulfate attack,” Cement and Concrete Research 64, 42–53 (2014).
- 11. M. Sakr, M. T. Bassuoni, T. Drimalas, H. Haynes, and K. J. Folliard, “Physical Salt Attack on Concrete: Mechanisms, Influential Factors, and Protection,” ACI Materials Journal 117(6), 253–268 (2020).
- 12. F. M. Aguayo Jr, “External Sulfate Attack of Concrete: An Accelerated Test Method, Mechanisms and Mitigation Techniques,” Ph.D. Thesis, University of Texas at Austin, Austin, TX, USA, 2016.
- 13. R. Dhole, M. D. A. Thomas, K. J. Folliard, and T. Drimalas, “Sulfate Resistance of Mortar Mixtures of High-Calcium Fly Ashes and Other Pozzolans,” ACI Materials Journal 108(6), 645–654 (2011).
- 14. B. Tian and M. D. Cohen, “Does gypsum formation during sulfate attack on concrete lead to expansion?,” Cement and Concrete Research 30(1), 117–123 (2000).
- 15. O. S. B. Al-Amoudi, “Attack on plain and blended cements exposed to aggressive sulfate environments,” Cement and Concrete Composites 24(3–4), 305–316 (2002).
- 16. R. K. Dhir, J. G. L. Munday, and L. T. Ong, “Investigations of the Engineering Properties of OPC/Pulverized-Fuel Ash Concrete: Deformation Properties,” The Institution of Structural Engineers 64B2, 36–42 (1986).
- 17. C. D. Atis, A. Kilic, and U. K. Sevim, “Strength and Shrinkage Properties of Mortar Containing a Nonstandard HighCalcium Fly Ash,” Cement and Concrete Research 34(1), 99–102 (2004).
- 18. ASTM C1012-18, “Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2018.
- 19. ASTM C305-20, “Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2020.
- 20. ACI 318-19, “Building code requirements for structural concrete,” Farmington Hills, MI: American Concrete Institute, 2019.
- 21. M. Janca, P. Siler, T. Opravil, and J. Kotrla, “Improving the Dispersion of Silica Fume in Cement Pastes and Mortars,” IOP Conference Series: Materials Science and Engineering 583, 012022 (2019).
- 22. D. Baweja, T. Cao, and L. Bucea, “Investigation of Dispersion Levels of Silica Fume in Pastes, Mortars, and Concrete,” ACI (SP) 212,1019–1034 (2003).
- 23. S. Mousavinezhad, G. J. Gonzales, W. K. Toledo, J. M. Garcia, C. M. Newtson, and S. Allena, “A Comprehensive Study on Non-Proprietary Ultra-High-Performance Concrete Containing Supplementary Cementitious Materials,” Materials 16, 2622 (2023). https://doi.org/10.3390/ma16072622
- 24. S. Ahmad, K. O. Mohaisen, S. K. Adekunle, S. U. Al-Dulaijan, and M. Maslehuddin, “Influence of Admixing Natural Pozzolan as Partial Replacement of Cement and Microsilica in UHPC Mixtures,” Construction and Building Materials 198, 437–444 (2019).
- 25. S. Mousavinezhad, G. J. Gonzales, W. K. Toledo, J. M. Garcia, and C. M. Newtson, “Mechanical Properties of Ultrahigh performance Concrete Containing Natural Pozzolan and Metakaolin,” In Tran-SET, 2022; ASCE: San Antonio, TX, USA, 2022; pp. 200–208. https://doi.org/10.1061/9780784484609.022
- 26. K. Ezziane, A. Bougara, A. Kadri, H. Khelafi, and E. Kadri, “Compressive Strength of Mortar Containing Natural Pozzolan Under Various Curing Temperature,” Cement and Concrete Composites 29(8), 587–593 (2007).
- 27. S. Mousavinezhad, J. M. Garcia, W. K. Toledo, and C. M. Newtson, “A Locally Available Natural Pozzolan as a Supplementary Cementitious Material in Portland Cement Concrete,” Buildings 13, 2364 (2023). https://doi.org/10.3390/buildings13092364
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7d1d5a6-bdee-4446-b5e7-22f7abcc44d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.